AD是△ABC中BC邊上的中線,若AB=4,AC=6,則AD的取值范圍是
 
考點(diǎn):全等三角形的判定與性質(zhì),三角形三邊關(guān)系
專題:
分析:延長(zhǎng)AD到E,使DE=AD,然后利用“邊角邊”證明△ABD和△ECD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CE=AB,然后根據(jù)三角形任意兩邊之和大于第三邊,兩邊之差小于第三邊求出AE的取值范圍,然后即可得解.
解答:解:如圖,延長(zhǎng)AD到E,使DE=AD,
∵AD是BC邊上的中線,
∴BD=CD,
在△ABD和△ECD中,
BD=CD
∠ADB=∠EDC
DE=AD
,
∴△ABD≌△ECD(SAS),
∴CE=AB,
∵AB=4,AC=6,
∴6-4<AE<6+4,即2<AE<10,
故答案為:1<AD<5.
點(diǎn)評(píng):本題考查了三角形的三邊關(guān)系,全等三角形的判定與性質(zhì),遇中點(diǎn)加倍延,作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程x(x-2)=0的解是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù)(例如:[2]=2,[1.25]=1),已知0≤a≤1,且滿足[a+
1
30
]+[a+
2
30
]+…[a+
29
30
]=18
,則[10a]=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求下列各式中的x.
(1)4x2=81;        
(2)(x-1)3-8=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M,N的坐標(biāo)分別是(0,2)和(0,-2),點(diǎn)P是二次函數(shù)y=
1
8
x2
的圖象上的一個(gè)動(dòng)點(diǎn).
(1)判斷以點(diǎn)P為圓心,PM為半徑的圓與直線y=-2的位置關(guān)系,并說明理由;
(2)設(shè)直線PM與二次函數(shù)y=
1
8
x2
的圖象的另一個(gè)交點(diǎn)為Q,連接NP,NQ,求證:∠PNM=∠QNM;
(3)過點(diǎn)P,Q分別作直線y=-2的垂線,垂足分別為H,R,取RH中點(diǎn)為E,求證:QE⊥PE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABE≌△ACD,∠1=75°,BD=2cm,DE=3cm,則∠2=
 
°,CD=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等邊△ABC在數(shù)軸上的位置如圖所示,點(diǎn)A、C對(duì)應(yīng)的數(shù)分別為0和-1,若△ABC繞著頂點(diǎn)順時(shí)針方向在數(shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)1次后,點(diǎn)B所對(duì)應(yīng)的數(shù)為1,則翻轉(zhuǎn)2013次后,點(diǎn)C所對(duì)應(yīng)的數(shù)是( 。
A、2011B、2014
C、2013D、2012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是邊CD上一點(diǎn),點(diǎn)F是CB延長(zhǎng)線上一點(diǎn),且DE=BF=4,解答下列問題:
(1)求證:△ABF≌△ADE;
(2)指出△AFB是由△AED怎樣旋轉(zhuǎn)得到的?并求出旋轉(zhuǎn)過程中線段DE所掃過的區(qū)域的面積(列式計(jì)算即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于點(diǎn)E,F(xiàn)為BC上一點(diǎn),BF=AE,連接AF交CE于點(diǎn)G,連接DG交AC于點(diǎn)H.下列結(jié)論:
①AF⊥CE;②△ABF∽△DGA;③AF=
2
DH;④S四邊形ADCG=
1
2
DG2

其中正確的結(jié)論有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案