【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象在第一象限內交于A(1,6),B(3,n)兩點.
(1)求這兩個函數(shù)的表達式;
(2)根據圖象直接寫出kx+b﹣<0的x的取值范圍.
【答案】(1)y=﹣2x+8;(2)0<x<1或x>3
【解析】分析:(1)把A(1,6)代入反比例函數(shù)表達式,進而求得B點坐標,由A,B坐標和待定系數(shù)法可求得一次函數(shù)的解析式;
(2)觀察圖形,一次函數(shù)的值小于反比例函數(shù)的值,即在第一象限內,一次函數(shù)在反比例函數(shù)下面的部分.
詳解:(1)∵把A(1,6)代入反比例函數(shù)表達式中,
m=1×6=6,
∴反比例函數(shù)表達式為:
把B(3,n)代入得
n=2.
∴B(3,2),
把A(1,6),B(3,2)代入一次函數(shù)表達式,得
解得:
∴一次函數(shù)表達式為:y=2x+8;
(2)有圖象可知0<x<1或x>3.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:△OAB.
求作:⊙O,使⊙O與△OAB的邊AB相切.
小明的作法如下:
如圖,①取線段OB的中點M;以M為圓心,MO為半徑作⊙M,與邊AB交于點C;
②以O為圓心,OC為半徑作⊙O;
所以,⊙O就是所求作的圓.
請回答:這樣做的依據是__________________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網格中,每個小正方形的邊長都為1.
(1)建立適當?shù)钠矫嬷苯亲鴺讼岛,若點A(1,3)、C(2,1),則點B的坐標為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā),外出散步,到一個公共閱報欄前看了一會報后,繼續(xù)散步了一段時間,然后回家,如圖描述了小明在散步過程匯總離家的距離s(米)與散步所用時間t(分)之間的函數(shù)關系,根據圖象,下列信息錯誤的是( )
A.小明看報用時8分鐘
B.公共閱報欄距小明家200米
C.小明離家最遠的距離為400米
D.小明從出發(fā)到回家共用時16分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知分式,試解答下列問題:
(1)分式有意義的條件是 ,分式的條件是 ;
閱讀材料:若分式的值大于,則或,
(2)根據上面這段閱讀材料,若分式,求的取值范圍;
(3)根據以上內容,自主探究:若分式,求的取值范圍(要求:寫出探究過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析表達式為,且與軸交于點.直線經過點,直線交于點.
(1)求點的坐標;
(2)求直線的解析表達式;
(3)在軸上求作一點,使的和最小,直接寫出的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c)
(1)用這樣的兩個三角形構造成如圖(2)的圖形,利用這個圖形,證明:a2+b2=c2;
(2)用這樣的兩個三角形構造圖3的圖形,你能利用這個圖形證明出題(1)的結論嗎?如果能,請寫出證明過程;
(3)當a=3,b=4時,將其中一個直角三角形放入平面直角坐標系中,使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合(如圖4中Rt△AOB的位置).點C為線段OA上一點,將△ABC沿著直線BC翻折,點A恰好落在x軸上的D處.
①請寫出C、D兩點的坐標;
②若△CMD為等腰三角形,點M在x軸上,請直接寫出符合條件的所有點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F(xiàn)是正方形ABCD外接圓上的兩個點,且EC∥BF,AD與BF的延長線交于點P.
(1)求∠EBF的度數(shù);
(2)求證:BPBE=AB2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com