【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點,OC=OA,若E是CD上任意一點,連接BE交AC于點F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長;
(3)請你添加一個條件,使得∠EFD=∠BAD,并予以證明.
【答案】(1)證明見解析;(2)8;(3)EB⊥CD,證明見解析.
【解析】
試題分析:(1)首先利用SSS定理證明△ABC≌△ADC可得∠BCA=∠DCA即可證明△CBF≌△CDF.
(2)由△ABC≌△ADC可知,△ABC與△ADC是軸對稱圖形,得出OB=OD,∠COB=∠COD=90°,因為OC=OA,所以AC與BD互相垂直平分,即可證得四邊形ABCD是菱形,然后根據(jù)勾股定理全等AB長,進而求得四邊形的面積.
(3)首先證明△BCF≌△DCF可得∠CBF=∠CDF,再根據(jù)BE⊥CD可得∠BEC=∠DEF=90°,進而得到∠EFD=∠BCD=∠BAD.
試題解析:(1)證明:在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∴∠BCA=∠DCA,
在△CBF和△CDF中,
,
∴△CBF≌△CDF(SAS),
(2)解:∵△ABC≌△ADC,
∴△ABC和△ADC是軸對稱圖形,
∴OB=OD,BD⊥AC,
∵OA=OC,
∴四邊形ABCD是菱形,
∴AB=BC=CD=DA,
∵AC=2,BD=2,
∴OA=,OB=1,
∴AB=,
∴四邊形ABCD的周長=4AB=4×2=8.
(3)當EB⊥CD時,即E為過B且和CD垂直時垂線的垂足,∠EFD=∠BCD,
理由:∵四邊形ABCD為菱形,
∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,
∵△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,
∴∠EFD=∠BAD.
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,△ABC各頂點都在格點上,點A、C的坐標分別為(﹣5,1)、(﹣1,4),結合所給的平面直角坐標系解答下列問題:
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出△ABC關于x軸對稱的△A2B2C2;
(3)點C1的坐標是 ;點C2的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程mx2﹣(m+2)x+2=0
(1)求證:不論m為何值,方程總有實數(shù)根;
(2)若方程的一個根是2,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年國慶假期寧德市接待游客2 940 000人次.將數(shù)據(jù)2 940 000用科學記數(shù)法表示為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A城氣象臺測得臺風中心在A城正西方向320km的B處,以每小時40km的速度向北偏東60°的BF方向移動,距離臺風中心200km的范圍內是受臺風影響的區(qū)域.
(1)自己畫出圖形并解答:A城是否受到這次臺風的影響?為什么?
(2)若A城受到這次臺風影響,那么A城遭受這次臺風影響有多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年10月24日上午9時港珠澳大橋正式通車,它是東亞建設的跨海大橋,連接香港大嶼山、澳門半島和廣東省珠海市,整個大橋造價超過720億元人民幣,將72000000000用科學記數(shù)法表示為( )
A.7.2×1011B.7.2×1010C.0.72×1011D.72×109
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某函數(shù)滿足當自變量x=-1時,函數(shù)的值y=2,且函數(shù)y的值始終隨自變量x的增大而減小,寫出一個滿足條件的函數(shù)表達式____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com