【題目】王輝在某景區(qū)經(jīng)營(yíng)一個(gè)小攤位,他以10/根的價(jià)格購(gòu)進(jìn)一批登山杖,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)當(dāng)售價(jià)為24/根時(shí),每天可出售156根,此后售價(jià)每增加5元,就會(huì)少售出30根.

1)求登山杖的單根售價(jià)(元)與銷售數(shù)量(根)之間的函數(shù)關(guān)系式;

2)若設(shè)王輝每天的日銷售利潤(rùn)為元,求之間的函數(shù)關(guān)系式;

3)為了避免惡性競(jìng)爭(zhēng)且保障商家獲得一定利潤(rùn),景區(qū)管理處規(guī)定登山杖的銷售單價(jià)不得低于32元且不高于36元,則王輝的日銷售利潤(rùn)最大是多少元?

【答案】1y=-6x+300;(2W=-6+2400;(3)當(dāng)售價(jià)定為32元時(shí),王輝的日銷售利潤(rùn)最大,且最大利潤(rùn)為2376元.

【解析】

1)根據(jù)銷售單價(jià)和銷售量之間的關(guān)系,列出函數(shù)關(guān)系式y=156-化簡(jiǎn)即可;

2)根據(jù)日銷售利潤(rùn)=單根利潤(rùn)×數(shù)量,可得出函數(shù)關(guān)系式W=-6+2400,化簡(jiǎn)整理即可;

3)由(2)中結(jié)論,利用二次函數(shù)的最值問題,結(jié)合單價(jià)的取值范圍,即可求出結(jié)果.

1)依據(jù)題意得,yx的函數(shù)關(guān)系式為:y=156-,

整理,得y=-6x+300,

答:所求y與x的函數(shù)關(guān)系式為:y=-6x+300,

故答案為:y=-6x+300;

2)依據(jù)日銷售利潤(rùn)=單根利潤(rùn)×數(shù)量,得Wx的函數(shù)關(guān)系式為:W=x-10)(-6x+300),

整理得W=-6+2400

答:日銷售利潤(rùn)W和x的函數(shù)關(guān)系式為:W=-6+2400,

故答案為:W=-6+2400;

3)∵W=-6+2400a=-6<0,

x>30,Wx的增加而減小,

∵銷售單價(jià)不得低于32元且不高于36元,

∴當(dāng)x=32時(shí),W有最大值,且最大值為W=-6+2400=2376(元),

答:當(dāng)售價(jià)定為32元時(shí),王輝的日銷售利潤(rùn)最大,且最大利潤(rùn)為2376元,

故答案為:2376

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

1)以AB邊上一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A,C;(保留作圖痕跡,不寫作法)

2)判斷點(diǎn)B與⊙O的位置關(guān)系是   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏參加答題游戲,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),,,第二道單選題有4個(gè)選項(xiàng),,,這兩道題小敏都不會(huì),不過小敏還有一個(gè)“求助”機(jī)會(huì),使用“求助”可以去掉其中一道題的一個(gè)錯(cuò)誤選項(xiàng).假設(shè)第一道題的正確選項(xiàng)是,第二道題的正確選項(xiàng)是,解答下列問題:

1)如果小敏第一道題不使用“求助”,那么她答對(duì)第一道題的概率是________;

2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;

3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小魯在一個(gè)不透明的盒子里裝了5個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,2個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+3x軸于點(diǎn)B,交y軸于點(diǎn)A,過點(diǎn)AACABx軸于點(diǎn)C

1)如圖1,求直線AC的解析式;

2)如圖2,點(diǎn)PAO的延長(zhǎng)線上,點(diǎn)QAC上,連接PB,PQ,且PQPB,設(shè)點(diǎn)P的縱坐標(biāo)為tAQ的長(zhǎng)為d,求dt之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)如圖3,在(2)的條件下,PQx軸于點(diǎn)D,延長(zhǎng)PQBA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)EEFPEy軸于點(diǎn)F,若DEEF,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰被某一條直線分成兩個(gè)等腰三角形,并且其中一個(gè)等腰三角形與原三角形相似,則等腰的頂角的度數(shù)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線ACBD交于點(diǎn)O,點(diǎn)EAD上,且DECD,連接OE,∠ABEACB,若AE2,則OE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)EBE的垂線交AB于點(diǎn)FO是△BEF的外接圓.

1)求證:ACO的切線;

2)過點(diǎn)EEHAB,垂足為H,若CD1,EH3,求BE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊ABCD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

同步練習(xí)冊(cè)答案