【題目】王輝在某景區(qū)經(jīng)營(yíng)一個(gè)小攤位,他以10元/根的價(jià)格購(gòu)進(jìn)一批登山杖,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)當(dāng)售價(jià)為24元/根時(shí),每天可出售156根,此后售價(jià)每增加5元,就會(huì)少售出30根.
(1)求登山杖的單根售價(jià)(元)與銷售數(shù)量(根)之間的函數(shù)關(guān)系式;
(2)若設(shè)王輝每天的日銷售利潤(rùn)為元,求與之間的函數(shù)關(guān)系式;
(3)為了避免惡性競(jìng)爭(zhēng)且保障商家獲得一定利潤(rùn),景區(qū)管理處規(guī)定登山杖的銷售單價(jià)不得低于32元且不高于36元,則王輝的日銷售利潤(rùn)最大是多少元?
【答案】(1)y=-6x+300;(2)W=-6+2400;(3)當(dāng)售價(jià)定為32元時(shí),王輝的日銷售利潤(rùn)最大,且最大利潤(rùn)為2376元.
【解析】
(1)根據(jù)銷售單價(jià)和銷售量之間的關(guān)系,列出函數(shù)關(guān)系式y=156-化簡(jiǎn)即可;
(2)根據(jù)日銷售利潤(rùn)=單根利潤(rùn)×數(shù)量,可得出函數(shù)關(guān)系式W=-6+2400,化簡(jiǎn)整理即可;
(3)由(2)中結(jié)論,利用二次函數(shù)的最值問題,結(jié)合單價(jià)的取值范圍,即可求出結(jié)果.
(1)依據(jù)題意得,y與x的函數(shù)關(guān)系式為:y=156-,
整理,得y=-6x+300,
答:所求y與x的函數(shù)關(guān)系式為:y=-6x+300,
故答案為:y=-6x+300;
(2)依據(jù)日銷售利潤(rùn)=單根利潤(rùn)×數(shù)量,得W與x的函數(shù)關(guān)系式為:W=(x-10)(-6x+300),
整理得W=-6+2400,
答:日銷售利潤(rùn)W和x的函數(shù)關(guān)系式為:W=-6+2400,
故答案為:W=-6+2400;
(3)∵W=-6+2400,a=-6<0,
∴x>30,W隨x的增加而減小,
∵銷售單價(jià)不得低于32元且不高于36元,
∴當(dāng)x=32時(shí),W有最大值,且最大值為W=-6+2400=2376(元),
答:當(dāng)售價(jià)定為32元時(shí),王輝的日銷售利潤(rùn)最大,且最大利潤(rùn)為2376元,
故答案為:2376.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)以AB邊上一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A,C;(保留作圖痕跡,不寫作法)
(2)判斷點(diǎn)B與⊙O的位置關(guān)系是 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏參加答題游戲,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),,,第二道單選題有4個(gè)選項(xiàng),,,,這兩道題小敏都不會(huì),不過小敏還有一個(gè)“求助”機(jī)會(huì),使用“求助”可以去掉其中一道題的一個(gè)錯(cuò)誤選項(xiàng).假設(shè)第一道題的正確選項(xiàng)是,第二道題的正確選項(xiàng)是,解答下列問題:
(1)如果小敏第一道題不使用“求助”,那么她答對(duì)第一道題的概率是________;
(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;
(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小魯在一個(gè)不透明的盒子里裝了5個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,2個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+3交x軸于點(diǎn)B,交y軸于點(diǎn)A,過點(diǎn)A作AC⊥AB交x軸于點(diǎn)C.
(1)如圖1,求直線AC的解析式;
(2)如圖2,點(diǎn)P在AO的延長(zhǎng)線上,點(diǎn)Q在AC上,連接PB,PQ,且PQ=PB,設(shè)點(diǎn)P的縱坐標(biāo)為t,AQ的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,PQ交x軸于點(diǎn)D,延長(zhǎng)PQ交BA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)E作EF⊥PE交y軸于點(diǎn)F,若DE=EF,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰被某一條直線分成兩個(gè)等腰三角形,并且其中一個(gè)等腰三角形與原三角形相似,則等腰的頂角的度數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E在AD上,且DE=CD,連接OE,∠ABE=∠ACB,若AE=2,則OE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,若CD=1,EH=3,求BE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com