【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
【答案】(1), ;(2)8;(3)x<﹣2或0<x<6.
【解析】試題分析:(1)根據(jù)已知條件求出A、B、C點(diǎn)坐標(biāo),用待定系數(shù)法求出直線AB和反比例函數(shù)的解析式;
(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點(diǎn)D的坐標(biāo),從而根據(jù)三角形面積公式求解;
(3)根據(jù)函數(shù)的圖象和交點(diǎn)坐標(biāo)即可求解.
試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=6.
∵CE⊥x軸于點(diǎn)E,tan∠ABO==,∴OA=2,CE=3,∴點(diǎn)A的坐標(biāo)為(0,2)、點(diǎn)B的坐標(biāo)為C(4,0)、點(diǎn)C的坐標(biāo)為(﹣2,3).
∵一次函數(shù)y=ax+b的圖象與x,y軸交于B,A兩點(diǎn),∴,解得: .
故直線AB的解析式為.
∵反比例函數(shù)的圖象過C,∴3=,∴k=﹣6,∴該反比例函數(shù)的解析式為;
(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得: ,可得交點(diǎn)D的坐標(biāo)為(6,﹣1),則△BOD的面積=4×1÷2=2,△BOC的面積=4×3÷2=6,故△OCD的面積為2+6=8;
(3)由圖象得,一次函數(shù)的值大于反比例函數(shù)的值時(shí)x的取值范圍:x<﹣2或0<x<6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國制造”是世界上認(rèn)知度最高的標(biāo)簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1臺A型號的空調(diào)比1臺B型號的空調(diào)少200元,購買2臺A型號的空調(diào)與3臺B型號的空調(diào)共需11200元,求A、B兩種型號的空調(diào)的購買價(jià)各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在中,,是的角平分線,,分別是,上的點(diǎn).求證:四邊形是鄰余四邊形;
(2)如圖2,已知,點(diǎn)在的垂直平分線上,在邊上,是內(nèi)一點(diǎn), 連接,,,,若四邊形是鄰余四邊形,是鄰余線.
①與有什么位置關(guān)系?說明理由.
②判斷形狀,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市實(shí)施城中村改造的過程中,“旺鑫”拆遷工程隊(duì)承包了一項(xiàng)10000 m2的拆遷工程.由于準(zhǔn)備工作充分,實(shí)際拆遷效率比原計(jì)劃提高了25%,提前2天完成了任務(wù),請解答下列問題:
(1)求“旺鑫”拆遷工程隊(duì)現(xiàn)在平均每天拆遷多少平方米;
(2)為了盡量減少拆遷給市民帶來的不便,在拆遷工作進(jìn)行了2天后,“旺鑫”拆遷工程隊(duì)的領(lǐng)導(dǎo)決定加快拆遷工作,將余下的拆遷任務(wù)在5天內(nèi)完成,那么“旺鑫”拆遷工程隊(duì)平均每天至少再多拆遷多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,0),B(3,0).
(1)在y軸上找一點(diǎn)C,使之滿足△ABC的面積為12,求點(diǎn)C的坐標(biāo).
(2)在y軸上找一點(diǎn)D,使BD=AB,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價(jià)為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直線向右平移個(gè)單位后與雙曲線有唯一公共點(diǎn),交另一雙曲線于,若軸平分的面積,則________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com