【題目】(2016山西省)我省某蘋果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg和5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):
方案A:每千克5.8元,由基地免費(fèi)送貨.
方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.
(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量x(kg)之間的函數(shù)表達(dá)式;
(2)求購買量x在什么范圍時,選用方案A比方案B付款少;
(3)某水果批發(fā)商計劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.
【答案】(1)方案A:函數(shù)表達(dá)式為y=5.8x;方案B:函數(shù)表達(dá)式為y=5x+2000;(2)2000≤x<2500;(3)方案B買的蘋果多.
【解析】試題分析:(1)根據(jù)數(shù)量關(guān)系列出函數(shù)表達(dá)式即可;(2)先求出方案A應(yīng)付款y與購買量x的函數(shù)關(guān)系為,方案B 應(yīng)付款y與購買量x的函數(shù)關(guān)系為,然后分段求出哪種方案付款少即可;(3)令y=20000,分別代入A方案和B方案的函數(shù)關(guān)系式中,求出x,比大。
試題解析:(1)方案A:函數(shù)表達(dá)式為.
方案B:函數(shù)表達(dá)式為
(2)由題意,得.
解不等式,得x<2500
∴當(dāng)購買量x的取值范圍為時,選用方案A比方案B付款少.
(3)他應(yīng)選擇方案B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:,OB,OM,ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當(dāng)射線OB繞點(diǎn)O在內(nèi)旋轉(zhuǎn)時,______度
也是內(nèi)的射線,如圖2,若,OM平分,ON平分,當(dāng)繞點(diǎn)O在內(nèi)旋轉(zhuǎn)時,求的大。
在的條件下,若,當(dāng)在繞O點(diǎn)以每秒的速度逆時針旋轉(zhuǎn)t秒,如圖3,若::3,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在正方形ABCD中,AB=6,P為邊CD上一點(diǎn),過P點(diǎn)作PE⊥BD于點(diǎn)E,連接BP.
(1)O為BP的中點(diǎn),連接CO并延長交BD于點(diǎn)F
①如圖1,連接OE,求證:OE⊥OC;
②如圖2,若,求DP的長;
(2)=___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B,C,D四個點(diǎn)不在同一直線上,根據(jù)下列語句畫圖.
(1)畫射線AB,畫直線AC,畫線段AD;
(2)連接BD與直線AC相交于點(diǎn)E;
(3)延長線段BC,反向延長線段DC;
(4)若在上述所畫的圖形中,設(shè)從點(diǎn)D到點(diǎn)C有四條路徑,它們分別是①D→A→B→C;②D→B→C;③D→E→C;④D→C;哪條道路最短?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由大小相同的小立方塊搭成的幾何體如左圖:
(1)請在下面的方格中畫出該幾何體從上面和從左面看的兩個圖形.
(2)若現(xiàn)在你手頭上還有一些相同的小立方塊,如果保持從上面看和從左面看所得圖形不變,則在左圖中最多可以再添加 個小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若關(guān)于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值
(2)閱讀材料:解方程組時,可由①得x﹣y=1③,然后再將③代入②得4×1﹣y=5,求得y=﹣1,從而進(jìn)一步求得,這種方法被稱為“整體代入法”,請用上述方法解方程組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),如圖2(注:圖2與圖1完全相同),都以每秒1個單位長度的速度分別沿線段AB,AC運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,將△APQ沿PQ所在直線翻折,點(diǎn)A恰好落在拋物線上E處,判定此時四邊形APEQ的形狀,說明理由,并求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某路公交車從起點(diǎn)經(jīng)過A、B、C、D站到達(dá)終點(diǎn),一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負(fù)數(shù)表示下車的人數(shù))
(1)到終點(diǎn)下車還有________人.
(2)車行駛在那兩站之間車上的乘客最多?________站和________站
(3)若每人乘坐一站需買票1元,問該車出車一次能收入多少錢?寫出算式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個動點(diǎn),點(diǎn)A關(guān)于直線BP的對稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.
(1)BQ+DQ的最小值是_______,此時x的值是_______;
(2)如圖②,若PQ的延長線交CD邊于點(diǎn)E,并且∠CQD=90°.
①求證:點(diǎn)E是CD的中點(diǎn); ②求x的值.
(3)若點(diǎn)P是射線AD上的一個動點(diǎn),請直接寫出當(dāng)△CDQ為等腰三角形時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com