【題目】如圖1,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),如圖2(注:圖2與圖1完全相同),都以每秒1個(gè)單位長度的速度分別沿線段AB,AC運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),將△APQ沿PQ所在直線翻折,點(diǎn)A恰好落在拋物線上E處,判定此時(shí)四邊形APEQ的形狀,說明理由,并求出點(diǎn)E的坐標(biāo).

【答案】
(1)

解:把點(diǎn)A(3,0),B(﹣1,0)代入y=ax2+bx﹣4(a≠0)得:

,

解得:


(2)

解:過點(diǎn)D作DM⊥y軸于點(diǎn)M,

∵y= x2 x﹣4= (x﹣1)2 ,

∴點(diǎn)D(1,﹣ )、點(diǎn)C(0,﹣4),

則SACD=S梯形AOMD﹣SCDM﹣SAOC

= ×(1+3)× ×( ﹣4)×1﹣ ×3×4

=4


(3)

解:四邊形APEQ為菱形,E點(diǎn)坐標(biāo)為(﹣ ,﹣ ).理由如下

如圖2,E點(diǎn)關(guān)于PQ與A點(diǎn)對稱,過點(diǎn)Q作,QF⊥AP于F,

∵AP=AQ=t,AP=EP,AQ=EQ

∴AP=AQ=QE=EP,

∴四邊形AQEP為菱形,

∵FQ∥OC,

= =

= =

∴AF= t,F(xiàn)Q= t

∴Q(3﹣ t,﹣ t),

∵EQ=AP=t,

∴E(3﹣ t﹣t,﹣ t),即E(3﹣ t,﹣ t),

∵E在二次函數(shù)y= x2 x﹣4上,

∴﹣ t= (3﹣ t)2 (3﹣ t)﹣4,

∴t= ,或t=0(與A重合,舍去),

則3﹣ t=﹣ ,﹣ t=﹣

∴E(﹣ ,﹣


【解析】(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y=ax2+bx﹣4中,求得b、a,進(jìn)而可求解析式;(2)由解析式先求得點(diǎn)D、C坐標(biāo),再根據(jù)SACD=S梯形AOMD﹣SCDM﹣SAOC , 列式計(jì)算即可;(3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、E對稱,則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對邊平行且相等的性質(zhì)可用t表示E點(diǎn)坐標(biāo),又E在二次函數(shù)的圖象上,所以代入即可求t,進(jìn)而E可表示.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,點(diǎn)E在AD上,且DE=DC.
(1)求證:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由大小相同的小立方塊搭成的幾何體如左圖:

(1)請?jiān)谙旅娴姆礁裰挟嫵鲈搸缀误w從上面和從左面看的兩個(gè)圖形.

(2)若現(xiàn)在你手頭上還有一些相同的小立方塊,如果保持從上面看和從左面看所得圖形不變,則在左圖中最多可以再添加   個(gè)小立方塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費(fèi)送貨.

方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.

(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量xkg)之間的函數(shù)表達(dá)式;

(2)求購買量x在什么范圍時(shí),選用方案A比方案B付款少;

(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).

(1)全校共有多少人參加比賽?

(2)組距是多少?組數(shù)是多少?

(3)分?jǐn)?shù)段在哪個(gè)范圍內(nèi)的人數(shù)最多?并求出該小組的頻數(shù)、頻率;

(4)如果比賽成績90分以上(含90分)可以獲得獎(jiǎng)勵(lì),那么獲獎(jiǎng)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組數(shù)中,以它們?yōu)檫呴L的線段不能構(gòu)成直角三角形的是 ( )

A. 3, 4, 5 B. C. 30, 40, 50 D. 0.3, 0.4, 0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國經(jīng)濟(jì)的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂國家興亡,匹夫有責(zé),某校積極開展國防知識教育,九年級甲、乙兩班

分別選5名同學(xué)參加國防知識比賽,

其預(yù)賽成績?nèi)鐖D所示:

1)根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

甲班

8.5

8.5

   

乙班

8.5

   

10

2)分別求甲乙兩班的方差,并從穩(wěn)定性上分析哪個(gè)班的成績較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我國的發(fā)展與強(qiáng)大,中國文化與世界各國文化的交流與融合進(jìn)一步加強(qiáng).為了增進(jìn)世界各國人民對中國語言和文化的理解,在世界各國建立孔子學(xué)院,推廣漢語,傳播中華文化.同時(shí),各國學(xué)校之間的交流活動(dòng)也逐年增加.在與國際友好學(xué)校交流活動(dòng)中,小敏打算制做一個(gè)正方體禮盒送給外國朋友,每個(gè)面上分別書寫一種中華傳統(tǒng)美德,一共有仁義禮智信孝六個(gè)字.如圖是她設(shè)計(jì)的禮盒平面展開圖,那么字對面的字是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費(fèi)方式如下:

消費(fèi)卡

消費(fèi)方式

普通卡

35元/次

白金卡

280元/張,憑卡免費(fèi)消費(fèi)10次再送2次

鉆石卡

560元/張,憑卡每次消費(fèi)不再收費(fèi)

以上消費(fèi)卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用
(Ⅰ)若每年去該健身中心6次,應(yīng)選擇哪種消費(fèi)方式更合算?
(Ⅱ)設(shè)一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費(fèi)用為y元,請分別寫出選擇普通消費(fèi)和白金卡消費(fèi)的y與x的函數(shù)關(guān)系式;
(Ⅲ)若某位顧客每年去該健身中心健身至少18次,請通過計(jì)算幫助這位顧客選擇最合算的消費(fèi)方式.

查看答案和解析>>

同步練習(xí)冊答案