【題目】四邊形ADBC中,AC=BC,∠ACB=90°, ADB=30°,AD=,CD=14, BD=_________

【答案】

【解析】

AHBDH,CNBDN,CMHAM,則四邊形CMHN是矩形.首先證明BCN≌△ACM,得四邊形CMHN是正方形,設(shè)CNa.構(gòu)建方程求出a即可解決問題;

解:作AHBDH,CNBDN,CMHAM,則四邊形CMHN是矩形.

∵∠BCA=∠MCN90°,

∴∠BCN=∠MCA,

∵∠CNB=∠M90°,BCCA,

∴△BCN≌△ACM,

CMCNBNAM,

∴四邊形CMHN是正方形,設(shè)CNa

RtAHD中,AD,∠ADH30°,

AHDH,

RtCND中,∵CN2DN2CD2,

a2+(a2142,

解得a(舍去),

AMBN,

BDBNNHDH,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購(gòu)買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過10000元,請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AMAN,線段MN與線段AD相交于點(diǎn)T,若AD3AT,則tanABM  ;

2)如圖2,在菱形ABCD中,CD6,∠ADC60°,菱形形內(nèi)部有一動(dòng)點(diǎn)P,滿足SPABS菱形ABCD,則點(diǎn)PA、B兩點(diǎn)的距離之和PA+PB的最小值為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,連接ACBD,2BDC+ADB180°

1)如圖1,求證:ACBC;

2)如圖2,E為⊙O上一點(diǎn), FAC上一點(diǎn),DEBF相交于點(diǎn)T,連接AT,若∠BFC=∠BDC+ABD,求證:AT平分∠DAB;

3)在(2)的條件下,DTTE,AD8,BD12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACBC,∠ACB90°,直線l經(jīng)過直角頂點(diǎn)C,ADl,BEl,垂足分別為D、E

1)如圖,若AD1,BE3,求DE的長(zhǎng)度.

2)當(dāng)直線lC點(diǎn)轉(zhuǎn)動(dòng)時(shí),若ADaBEb.請(qǐng)畫出示意的圖形并用含a、b的代數(shù)式直接表示出DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,對(duì)角線,相交于點(diǎn)平分于點(diǎn),,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,DEFG都是正方形,邊長(zhǎng)分別為m,nmn).坐標(biāo)原點(diǎn)OAD的中點(diǎn),A,DEy軸上,若二次函數(shù)yax2的圖象過C,F兩點(diǎn),則=( 。

A.+1B.+1C.21D.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對(duì)角線ACBD相交于點(diǎn)E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點(diǎn)F是邊BC上一點(diǎn),連接AF,與BD相交于點(diǎn)G,如果∠BAF=∠DBF,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,AD的角平分線,且,以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫弧EF,交AB于點(diǎn)E,交AC于點(diǎn)F

1)求由弧EF及線段FC、CBBE圍成圖形(圖中陰影部分)的面積;

2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個(gè)圓錐的側(cè)面,AEAF正好重合,圓錐側(cè)面無重疊,求這個(gè)圓錐的高h

查看答案和解析>>

同步練習(xí)冊(cè)答案