【題目】將△ABC繞點C旋轉(zhuǎn)180°得到△FEC.
(1)試猜想AE與BF有何關(guān)系?說明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
【答案】(1)AE∥BF,AE=BF,理由詳見解析;(2)12cm2.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,可得AB=FE,再根據(jù)∠ABC=∠FEC可得AB∥FE,即可證明四邊形ABFE為平行四邊形,從而得證AE∥BF,AE=BF.
(2)根據(jù)平行四邊形的性質(zhì)可得AC=CF,BC=CE,再根據(jù)等底同高可得四邊形ABFE的面積.
解:(1)AE∥BF,AE=BF.
理由是:∵△ABC繞點C順時針旋轉(zhuǎn)180°得到△FEC,
∴,
∴AB=FE,
∵∠ABC=∠FEC,
∴AB∥FE,
∴四邊形ABFE為平行四邊形,
∴AE∥BF,AE=BF;
(2)由(1)得四邊形ABFE為平行四邊形,
∴AC=CF,BC=CE,
∴根據(jù)等底同高得到S△ABC=S△ACE=S△BCF=S△CEF=3cm2,
S四邊形ABFE=4S△ABC=12cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬5m的貨船,船艙頂部為長方形,并高出水面3.6m,求此貨船是否能順利通過拱橋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市今年 1 月份的銷售額為 500 萬元,超市預(yù)計每個月的銷售額會逐月增加.預(yù)測 3 月 份的銷售額比 2 月份增加 120 萬元;
(1)求 2、3 月份平均每月銷售額的增長率;
(2)按照這樣的增長速度,超市想在第一季度完成 1800 萬元的銷售目標(biāo)是否能實現(xiàn)?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,動點E、F分別在邊AB、AD上,且AF=AE.將△AEF繞點E順時針旋轉(zhuǎn)90°得到△A'EF',設(shè)AE=x,△A'EF'與矩形ABCD重疊部分面積為S,S的最大值為9.
(1)求AD的長;
(2)求S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,
(1)求證:直線AB是⊙O的切線;
(2)OA,OB分別交⊙O于點D,E,AO的延長線交⊙O于點F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長沙市教育局組織部分教師分別到A、B、C、D四個地方進(jìn)行課程培訓(xùn),教育局按定額購買了前往四地的車票,如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)若去A地的車票占全部車票的20%,求去C地的車票數(shù),并補(bǔ)全條形統(tǒng)計圖(圖1);
(2)請從小到大寫出這四類車票數(shù)的數(shù)字,并直接寫出這四個數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)如圖2,甲轉(zhuǎn)盤被分成四等份且標(biāo)有數(shù)字1、2、3、4,乙轉(zhuǎn)盤分成三等份且標(biāo)有數(shù)字7、8、9,具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)指針指向的兩個數(shù)字之和是偶數(shù)時,李老師出去培訓(xùn),否則張老師出去培訓(xùn)(指針指在線上重轉(zhuǎn)),試用“列表法”或“樹狀圖”的方法分析這個規(guī)定對雙方是否公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線y1=2x+4分別與x軸,y軸交于A,B兩點,以線段OB為一條邊向右側(cè)作矩形OCDB,且點D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y1=2x+4與直線y2=﹣x+b交于點P.則P的坐標(biāo)為( )
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知如圖1,在中,,,點在內(nèi)部,點在外部,滿足,且.求證:.
(2)已知如圖2,在等邊內(nèi)有一點,滿足,,,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com