【題目】閱讀材料:

在平面直角坐標系xOy中,點P(x0,y0)到直線Ax+By+C=0的距離公式為:

例如:求點P0(0,0)到直線4x+3y﹣3=0的距離.

解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴點P0(0,0)到直線4x+3y﹣3=0的距離為=

根據(jù)以上材料,解決下列問題:

問題1:點P1(3,4)到直線的距離為 ;

問題2:已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線相切,求實數(shù)b的值;

問題3:如圖,設點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出SABP的最大值和最小值.

【答案】(1)4;(2)b=;(3)SABP的最大值=4,SABP的最小值=2.

【解析】

試題(1)根據(jù)點到直線的距離公式就是即可;

(2)根據(jù)點到直線的距離公式,列出方程即可解決問題.

(3)求出圓心C到直線3x+4y+5=0的距離,求出C上點P到直線3x+4y+5=0的距離的最大值以及最小值即可解決問題.

試題解析:解:(1)點P1(3,4)到直線3x+4y﹣5=0的距離d==4,故答案為:4.

(2)∵⊙C與直線相切,C的半徑為1,∴C(2,1)到直線3x+4y﹣4b=0的距離d=1,∴ =1,解得b=

(3)點C(2,1)到直線3x+4y+5=0的距離d==3,∴⊙C上點P到直線3x+4y+5=0的距離的最大值為4,最小值為2,∴SABP的最大值=×2×4=4,SABP的最小值=×2×2=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AB⊙O的直徑,點CAB的延長線上,AB=4BC=2,P⊙O上半部分的一個動點,連接OP,CP

1)求△OPC的最大面積;

2)求∠OCP的最大度數(shù);

3)如圖2,延長PO⊙O于點D,連接DB,當CP=DB時,求證:CP⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】參照學習函數(shù)的過程方法,探究函數(shù)的圖像與性質,因為,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點:在平面直角坐標系中以自變量的取值為橫坐標,以相應的函數(shù)值為縱坐標,描出相應的點如圖所示:

1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關于點______中心對稱.(填點的坐標)

3)函數(shù)與直線交于點,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(m,m+1),B(m+3m1)都在反比例函數(shù)的圖象上,如果Mx軸上一點,Ny軸上一點,以點A,BM,N為頂點的四邊形是平行四邊形,直接寫出點M,N的坐標:____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。

A. 12 B. 6 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2bxc(a≠0)的對稱軸為直線x=-1,與x軸的一個交點在(3,0)(2,0)之間,其部分圖象如圖,則下列結論:①4acb20;②2ab0;③abc0;④點(x1,y1),(x2,y2)在拋物線上,若x1x2,則y1y2 .正確結論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的頂點在⊙O上,點P是劣弧上的一點(端點除外),延長BP至點D,使BDAP,連結CD.

(1)AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說明理由;

(2)AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=-x+7與正比例函數(shù)y=x的圖像交于點A,且與x軸交于點B.

1)求點A和點B的坐標;

2)過點AACy軸于點C,過點B作直線ly軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿OCA的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線lx軸于點R,交線段BA或線段AO于點Q.當點P到達點A時,點P和直線l都停止運動.在運動過程中,設動點P運動的時間為t.

①當t為何值時,以A、P、R為頂點的三角形的面積為8

②是否存在以A、PQ為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,以點B為圓心,BC長為半徑畫弧,交線段AB于點D;以點A為圓心,AD長為半徑畫弧,交線段AC于點E,連結CD

1)若∠A28°,求∠ACD的度數(shù).

2)設BCa,ACb

①線段AD的長是方程x2+2axb20的一個根嗎?說明理由.

②若ADEC,求的值.

查看答案和解析>>

同步練習冊答案