【題目】如圖,OC是∠AOB的平分線,點(diǎn)POC上且OP=4,∠AOB=60°,過(guò)點(diǎn)P的動(dòng)直線DEOAD,交OBE,那么=_____

【答案】

【解析】

過(guò)點(diǎn)PPM⊥ODM,PN⊥OEN,作EH⊥ODH,再用OE表示出EH,求出S△DOE,根據(jù)角平分線的性質(zhì)分別求出PM,PN,求出S△DOE,列式計(jì)算即可.

解:過(guò)點(diǎn)PPM⊥ODM,PN⊥OEN,作EH⊥ODH,

Rt△EOH中,∠AOB=60°,

EH= OE,

∴S△DOE=×OD×EH=×OD×OE,
∵OC是∠AOB的平分線,OP=4,
∴∠MOP=∠NOP=30°,PM=PN=OP=2,
∴S△DOE=S△DOP+S△POE=×ODPM+×OEPN=OD+OE,
×OD×OE=OD+OE,

.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

(1)求這次調(diào)查的家長(zhǎng)人數(shù),并補(bǔ)全圖1;

(2)求圖2中表示家長(zhǎng)“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長(zhǎng),估計(jì)其中反對(duì)中學(xué)生帶手機(jī)的大約有多少名家長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】快車(chē)和慢車(chē)分別從A市和B市兩地同時(shí)出發(fā),勻速行駛,先相向而行,慢車(chē)到達(dá)A市后停止行駛,快車(chē)到達(dá)B市后,立即按原路原速度返回A市(調(diào)頭時(shí)間忽略不計(jì)),結(jié)果與慢車(chē)同時(shí)到達(dá)A市.快、慢兩車(chē)距B市的路程y1、y2(單位:km)與出發(fā)時(shí)間x(單位:h)之間的函數(shù)圖像如圖所示.

1A市和B市之間的路程是 km;

2)求a的值,并解釋圖中點(diǎn)M的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;

3)快車(chē)與慢車(chē)迎面相遇以后,再經(jīng)過(guò)多長(zhǎng)時(shí)間兩車(chē)相距20 km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)點(diǎn)A(0,﹣4)的拋物線y=x2+bx+cx軸相交于點(diǎn)B(﹣2,0)和C,O為坐標(biāo)原點(diǎn).

(1)求拋物線解析式;

(2)將拋物線y=x2+bx+c向上平移個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度,得到新拋物線,若新拋物線的頂點(diǎn)P△ABC內(nèi),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰RtABC,點(diǎn)D為斜邊AB上的中點(diǎn),點(diǎn)E在線段BD上,連結(jié)CDCE,作AHCE,垂足為H,交CD于點(diǎn)G,AH的延長(zhǎng)線交BC于點(diǎn)F.

1)求證:ADG≌△CDE.

2)若點(diǎn)H恰好為CE的中點(diǎn),求證:∠CGF=CFG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在四邊形中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿,運(yùn)動(dòng)至點(diǎn)停止.設(shè)點(diǎn)運(yùn)動(dòng)的路程為,的面積為,如果關(guān)于的函數(shù)圖象如圖(2)所示,則的面積是(

A.6B.5C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在中,,平分.

求證:.

小明為解決上面的問(wèn)題作了如下思考:

關(guān)于直線的對(duì)稱(chēng)圖形,∵平分,∴點(diǎn)落在上,且,.因此,要證的問(wèn)題轉(zhuǎn)化為只要證出即可.

請(qǐng)根據(jù)小明的思考,寫(xiě)出該問(wèn)題完整的證明過(guò)程.

2)參照(1)中小明的思考方法,解答下列問(wèn)題:

如圖3,在四邊形中,平分,,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個(gè)正方形的邊長(zhǎng)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案