【題目】如圖是某個正方體的表面展開圖,各個面上分別標有1﹣6的不同數字,若將其折疊成正方體,則相交于同一個頂點的三個面上的數字之和最大的是
科目:初中數學 來源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,
(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3 , 繼續(xù)操作下去…,則第10次剪取時,s10=;
(3)求第10次剪取后,余下的所有小三角形的面積之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一塊直角三角板OAB放在平面直角坐標系中,B(2,0),∠AOB=60°,點A在第一象限,過點A的雙曲線為 .在x軸上取一點P,過點P作直線OA的垂線l,以直線l為對稱軸,線段OB經軸對稱變換后的像是O′B′.
(1)當點O′與點A重合時,點P的坐標是;
(2)設P(t,0),當O′B′與雙曲線有交點時,t的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 A,O,B 在同一條直線上,OD,OE 分別平分∠AOC 和∠BOC.
(1)求∠DOE 的度數;
(2)如果∠COD=65°,求∠AOE 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,點O是AC上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請猜測OE與OF的大小關系,并說明你的理由;
(2)點O運動到何處時,四邊形AECF是矩形?寫出推理過程;
(3)點O運動到何處且△ABC滿足什么條件時,四邊形AECF是正方形?(寫出結論即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】回答下列問題:
(1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?
(2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數為f,頂點個數為v,棱數為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現什么規(guī)律?
(3)應用上述規(guī)律解決問題:一個多面體的頂點數比面數大8,且有50條棱,求這個幾何體的面數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)機械廠加工車間有85名工人,平均每人每天加工大齒輪16個或小齒輪10個,已知2個大齒輪與3個小齒輪配成一套,問需分別安排多少名工人加工大、小齒輪,才能使每天加工的大小齒輪剛好配套?
(2)某蔬菜公司的一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元,經粗加工后銷售,每噸利潤可達4500元,經精加工后銷售,每噸利潤漲至7500元,當地一家公司收購這種蔬菜140噸,該公司的加工生產能力是:如果對蔬菜進行粗加工,每天可加工16噸,如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)等條件限制,公司必須在15天將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案:
方案一:將蔬菜全部進行粗加工.
方案二:盡可能多地對蔬菜進行精加工,沒來得及進行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為哪種方案獲利最多?為什么?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com