若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是( 。
A、矩形
B、等腰梯形
C、對角線相等的四邊形
D、對角線互相垂直的四邊形
考點(diǎn):中點(diǎn)四邊形
專題:
分析:首先根據(jù)題意畫出圖形,由四邊形EFGH是菱形,點(diǎn)E,F(xiàn),G,H分別是邊AD,AB,BC,CD的中點(diǎn),利用三角形中位線的性質(zhì)與菱形的性質(zhì),即可判定原四邊形一定是對角線相等的四邊形.
解答:解:如圖,根據(jù)題意得:四邊形EFGH是菱形,點(diǎn)E,F(xiàn),G,H分別是邊AD,AB,BC,CD的中點(diǎn),
∴EF=FG=CH=EH,BD=2EF,AC=2FG,
∴BD=AC.
∴原四邊形一定是對角線相等的四邊形.
故選:C.
點(diǎn)評:此題考查了菱形的性質(zhì)與三角形中位線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一個(gè)能自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤如圖,盤面被分成8個(gè)大小與性狀都相同的扇形,顏色分為黑白兩種,將指針的位置固定,讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng),當(dāng)它停止后,指針指向白色扇形的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

要使分式
1
x-10
有意義,則x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,M、N是兩直角邊上的點(diǎn),且AM=BC,CM=BN,BM、AN交于點(diǎn)P,則∠APM的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(3,4),將OA繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至OA′,則點(diǎn)A′的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

反比例函數(shù)y=-
2
x
(x>0),點(diǎn)B為其上一點(diǎn),點(diǎn)A為x軸負(fù)半軸上一點(diǎn),當(dāng)點(diǎn)B的橫坐標(biāo)逐漸減小時(shí),△AOB的面積(  )
A、逐漸減少B、逐漸增大
C、不變D、先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-3,0),(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng),以CP,CO為鄰邊構(gòu)造?PCOD,在線段OP延長線上取點(diǎn)E,使PE=AO,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)點(diǎn)C運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),求t的值及點(diǎn)E的坐標(biāo);
(2)當(dāng)點(diǎn)C在線段OB上時(shí),求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點(diǎn)F,使PF=1,過點(diǎn)F作MN⊥PE,截取FM=2,F(xiàn)N=1,且點(diǎn)M,N分別在一,四象限,在運(yùn)動(dòng)過程中,設(shè)?PCOD的面積為S.
①當(dāng)點(diǎn)M,N中有一點(diǎn)落在四邊形ADEC的邊上時(shí),求出所有滿足條件的t的值;
②若點(diǎn)M,N中恰好只有一個(gè)點(diǎn)落在四邊形ADEC的內(nèi)部(不包括邊界)時(shí),直接寫出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為平行四邊形,AE⊥BD于E,CF⊥BD于F,垂足分別為E、F.
(1)求證:BF=DE;
(2)連接CE、AF,證明四邊形CEAF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:
a-3
3a2-6a
÷(a+2-
5
a-2
),其中a2+3a-1=0.

查看答案和解析>>

同步練習(xí)冊答案