【題目】如圖,在由邊長均為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點都在格點(網(wǎng)格線的交點)上,請按要求完成下列各題.
(1)試證明△ABC是直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=,O是BC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AE,CF.
(1)求證:AE=CF;
(2)若A,E,O三點共線,連接OF,求線段OF的長.
(3)求線段OF長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補(bǔ)充完整.
原題:如圖1,在△ABC中,點D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點P,求證:=.
(1)嘗試探究:在圖1中,由DP∥BQ,得△ADP___△ABQ(填“≌”或“∽”),則=___,同理可得=,從而=;
(2)類比延伸:如圖2,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點,若AB=AC=1,則MN的長為_____;
(3)拓展遷移:如圖3,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點,AB<AC,求證:MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中每個小正方形的邊長均為1,△ABC經(jīng)過平移后得到△A1B1C1,若AC上一點P(1.2,1.4)平移后對應(yīng)點為P1,點P1繞原點順時針旋轉(zhuǎn)180°,對應(yīng)點為P2,則點P2的坐標(biāo)為( )
A. (2.8,3.6) B. (﹣2.8,﹣3.6)
C. (3.8,2.6) D. (﹣3.8,﹣2.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,若線段上的個點把這條線段分制為兩部分,其中較長的一部分與全長之比等于時,則這個點稱為黃金分割點。類比三角形中線的定義,我們規(guī)定:連接三角形的一個頂點和它對邊的黃金分割點的線段叫做該三角形的黃金分割線.
(1)如圖1,CD是△ABC的黃金分割線(AD> BD),△ABC的面積為4,求△ACD的面積 ;
(2)如圖2,在△ABC中,∠A= 36°,AB=AC=1,過點B作BD平分∠ABC,與AC相交于點D,求證: BD是△ABC的黃金分割線.
(3)如圖3,BE、CD是△ABC的黃金分割線(AD> BD,AE> CE),BE、CD相交于點O.
①設(shè)△BOD與△COE的面積分別為S1、S2 ,請猜想S1、S2之間的數(shù)量關(guān)系,并說明理由;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若OH⊥AC,OH=1,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.
(1)求小球飛行3s時的高度;
(2)問:小球的飛行高度能否達(dá)到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數(shù),請解答下列問題:
(1)求的值;
(2)這個幾何體最少有幾個小立方體搭成,最多有幾個小立方體搭成;
(3)當(dāng)時畫出這個幾何體的左視圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com