【題目】在中,,,,將沿軸依次以點、、為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖?、圖②、…,則旋轉(zhuǎn)得到的圖2018的直角頂點的坐標為________.
【答案】(8072,0)
【解析】
利用勾股定理得到AB的長度,結(jié)合圖形可求出圖③的直角頂點的坐標;根據(jù)圖形不難發(fā)現(xiàn),每3個圖形為一個循環(huán)組依次循環(huán),且下一組的第一個圖形與上一組的最后一個圖形的直角頂點重合.
∵∠AOB=90°,OA=3,OB=4,
∴AB===5,
∴旋轉(zhuǎn)得到圖③的直角頂點的坐標為(12,0);
根據(jù)圖形,每3個圖形為一個循環(huán)組,3+5+4=12,
因為2018÷3=672…2
所以圖2018的直角頂點在x軸上,橫坐標為672×12+3+5=8072,
所以圖2018的頂點坐標為(8072,0),
故答案是:(8072,0).
科目:初中數(shù)學 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,均是邊長為的等邊三角形,點是邊、的中點,直線、相交于點.當繞點旋轉(zhuǎn)時,線段長的最小值是( )
A. 2- B. +1 C. D. -1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程組解應用題某校組織“大手拉小手,義賣獻愛心”活動,計劃購買黑、白兩種顏色的文化衫進行手繪設計后出售,并將所獲利潤全部捐給山區(qū)困難孩子.已知該學校從批發(fā)市場花2400元購買了黑、白兩種顏色的文化衫100件,每件文化衫的批發(fā)價及手繪后的零售價如表:
批發(fā)價(元) | 零售價(元) | |
黑色文化衫 | 25 | 45 |
白色文化衫 | 20 | 35 |
(1)學校購進黑、白文化衫各幾件?
(2)通過手繪設計后全部售出,求該校這次義賣活動所獲利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊運動員中進行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計算甲、乙成績的方差,并從計算結(jié)果來分析,你認為哪位運動員的射擊成績更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的頂點A(1,1),B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換.如圖這樣的等邊△ABC連續(xù)經(jīng)過2018次變換后,頂點C的坐標為_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com