【題目】某直銷公司現(xiàn)有名推銷員,月份每個(gè)人完成銷售額(單位:萬(wàn)元),數(shù)據(jù)如下:
整理上面的數(shù)據(jù)得到如下統(tǒng)計(jì)表:
銷售額 | ||||||||||
人數(shù) |
(1)統(tǒng)計(jì)表中的 ; ;
(2)銷售額的平均數(shù)是 ;眾數(shù)是 ;中位數(shù)是 .
(3)月起,公司為了提高推銷員的積極性,將采取績(jī)效工資制度:規(guī)定一個(gè)基本銷售額,在基本銷售額內(nèi),按抽成;從公司低成本與員工愿意接受兩個(gè)層面考慮,你認(rèn)為基本銷售額定位多少萬(wàn)元?請(qǐng)說(shuō)明理由.
【答案】(1),;(2)平均數(shù):,眾數(shù):,中位數(shù):;(3)基本銷售額定為萬(wàn)元,理由詳見解析.
【解析】
(1)根據(jù)題干中的數(shù)據(jù)可得出a,b的值;
(2)按照平均數(shù),中位數(shù),眾數(shù)的定義分別求得;
(3)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.
解:(1),;
(2)平均數(shù)=(10×2+13×3+15+17×7+18+22×4+23×3+24×3+26×4+28×2)÷30=20(萬(wàn)元);
出現(xiàn)次數(shù)最多的是17萬(wàn)元,所以眾數(shù)是17(萬(wàn)元);
把銷售額按從小到大順序排列后,第15,16位都是22萬(wàn)元,所以中位數(shù)是22(萬(wàn)元).
故答案為:;;.
(3)基本銷售額定為萬(wàn)元.
理由:作為數(shù)據(jù)的代表,本組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)三個(gè)量作為基本額都具有合理性.其中中位數(shù)為萬(wàn)最大,選擇中位數(shù)對(duì)公司最有利,付出成本最低,對(duì)員工來(lái)說(shuō),這只是個(gè)中等水平,可以接受,所以選擇中位數(shù)作為基本額.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解
材料一:已知在平面直角坐標(biāo)系中有兩點(diǎn),,其兩點(diǎn)間的距離公式為:,當(dāng)兩點(diǎn)所在直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間的距離公式可化簡(jiǎn)為或;
材料二:如圖1,點(diǎn),在直線的同側(cè),直線上找一點(diǎn),使得的值最小.解題思路:如圖2,作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接交直線于,則點(diǎn),之間的距離即為的最小值.
請(qǐng)根據(jù)以上材料解決下列問(wèn)題:
(1)已知點(diǎn)在平行于軸的直線上,點(diǎn)在第二象限的角平分線上,,求點(diǎn)的坐標(biāo);
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),請(qǐng)?jiān)谥本上找一點(diǎn),使得最小,求出的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上依次標(biāo)有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點(diǎn)的橫、縱坐標(biāo),則點(diǎn)M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點(diǎn)的三角形內(nèi)(包含邊界)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,如果頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小的等腰三角形,那么我們就說(shuō)原三角形為“可分割三角形”,這條線段叫做這個(gè)三角形的分割線.
(1)已知,,,則可分割三角形.(填“是”或“不是”)
(2)小愿研究發(fā)現(xiàn),下圖的兩個(gè)三角形都是可分割三角形,請(qǐng)你畫出每個(gè)三角形的分割線,并標(biāo)出分成的等腰三角形頂角的度數(shù).
(3)若是可分割三角形,,為鈍角,請(qǐng)通過(guò)畫圖的方式寫出所有可能的度數(shù)(畫出圖形,標(biāo)示的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△中,于,,點(diǎn)、分別為、上的兩個(gè)定點(diǎn)且,在上有一動(dòng)點(diǎn)使最短,則的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.
(1)求BD的長(zhǎng);
(2)求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.
(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫出圖形,并直接寫出MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·漳州)(滿分8分)漳州市某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:
(1)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有_ ▲ 人達(dá)標(biāo);
(3)若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com