如圖,AB是⊙O的直徑,DF⊥AB于點(diǎn)D,交弦AC于點(diǎn)E,F(xiàn)C=FE.
求證:FC是⊙O的切線.
考點(diǎn):切線的判定
專題:證明題
分析:連接OC.欲證FC是⊙O的切線,只需證明FC⊥OC即可;
解答:證明:連接OC.

∵FC=FE,
∴∠FCE=∠FEC.
又∵∠AED=∠FEC,
∴∠FCE=∠AED.
∵OC=OA,
∴∠OCA=∠OAC,
∴∠FCO=∠FCE+∠OCA
=∠AED+∠OAC=180°-∠ADE.
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCO=90°,即OC⊥FC.
又∵點(diǎn)C在⊙O上,
∴FC是⊙O的切線;
點(diǎn)評(píng):本題考查了切線的判定.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>n>0,m2+n2=4mn,求
m2-n2
mn
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)E是矩形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連接AE,交CD于點(diǎn)F,G是AF的中點(diǎn),再連接DG、DE,且DE=DG.
(1)求證:∠DEA=2∠AEB;
(2)若BC=2AB,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)的邊長(zhǎng)為l米的正方形裝飾材料ABCD如圖所示,點(diǎn)E在BC上,點(diǎn)F是CD的中點(diǎn),△ABE、△CEF和四邊形AEFD分別由Ⅰ型、Ⅱ型、Ⅲ型三種材料制成.
(1)設(shè)BE=x,請(qǐng)用含x的代數(shù)式分別表示△ABE和△EFC的面積;
(2)己知1型、Ⅱ型、Ⅲ型三種材料每平方米的價(jià)格分別為50元、100元和40元,若要求制成這樣一塊裝飾材料的成本為50元,求點(diǎn)E的位置;
(3)由于市場(chǎng)變化,1型材科和Ⅱ型材料每平方米的價(jià)格變?yōu)?0元和80元,Ⅲ型材料的價(jià)格不變,現(xiàn)仍要生產(chǎn)(2)中式樣的裝飾材料,則每塊的成本將有何變化?變化多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AE是圓O的直徑,點(diǎn)B在AE的延長(zhǎng)線上,點(diǎn)D在圓O上,且AC⊥DC,AD平分∠EAC
(1)求證:BC是圓O的切線.
(2)若BE=8,BD=12,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(
1
2
2-
27
sin60°+(
2
-1)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=kx+b.當(dāng)x=-3時(shí),y=0;當(dāng)x=1時(shí),y=-4.求k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,D是BC邊上的中點(diǎn),∠BDE=∠CDF,請(qǐng)你添加一個(gè)條件(不再添加其它線段,不再標(biāo)注或使用其他字母),使DE=DF成立.
(1)你的條件是
 

(2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若方程x2-2x-1=0的兩個(gè)實(shí)數(shù)根為x1,x2,則x12+x22=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案