【題目】已知線段a及如圖形狀的圖案.

(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)

(2)a=6時,求圖案中陰影部分正六邊形的面積.

【答案】(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為

【解析】

試題

(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;

(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出ABOE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6SOCD求出陰影部分的面積了.

試題解析

(1)所作圖形如下圖所示:

(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,

∴∠ABO=30°,BC=OC=CD=AD,

∴BE=OB·cos30°=,OE=3,

∴AB=,

∴CD=,

∴SOCD=

∴S陰影=6SOCD=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一副三角板按如圖放置,則下列結(jié)論:①如果∠2=30°,則有ACDE;②如果BCAD,則有∠2=45°;③∠BAE+CAD隨著∠2的變化而變化;④如果∠2=30°,那么∠4=45°;正確的(

A.①②③

B.①②④

C.①③④

D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在上學的路上要經(jīng)過多個路口,每個路口都設(shè)有紅、黃、綠三種信號燈,假設(shè)在各路口遇到信號燈是相互獨立的.

(1).如果有2個路口,求小明在上學路上到第二個路口時第一次遇到紅燈的概率.(請用畫樹狀圖列表等方法寫出分析過程)

(2).如果有n個路口,則小明在每個路口都沒有遇到紅燈的概率是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α (0°<α <360°),得到線段AC,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α 的值為_________,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 6個相同的小正方體擺成如圖的幾何體.

1)畫出該幾何體的主視圖、左視圖、俯視圖;

2)如果每個小正方體棱長為,則該幾何體的表面積是

3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD的面積為S,點P、Q時是ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學對條件進行分析后,甲得到結(jié)論①:“E是BC中點” .乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉(zhuǎn)90°后,得到A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為

)請直接寫出袋子中白球的個數(shù).

)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】傳統(tǒng)節(jié)日端午節(jié)的早晨,小文媽媽為小文準備了四個粽子作早點:一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內(nèi)部餡料不同外,其它一切均相同.

1)小文吃前兩個粽子剛好都是花生餡粽的概率為 ;

2)若媽媽在早點中給小文再增加一個花生餡的粽子,則小文吃前兩個粽子都是花生餡粽的可能性是否會增大?請說明理由.

查看答案和解析>>

同步練習冊答案