【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過(guò)點(diǎn)G作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)G作GD⊥AC于D,下列三個(gè)結(jié)論:① EF=BE+CF;②∠BGC=90°+∠A;③點(diǎn)G到△ABC各邊的距離相等;其中正確的結(jié)論有_________(填序號(hào))
【答案】①②③
【解析】
①根據(jù)∠ABC和∠ACB的平分線相交于點(diǎn)G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出結(jié)論;
②先根據(jù)角平分線的性質(zhì)得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形內(nèi)角和定理即可得出結(jié)論;
由角平分線的性質(zhì)得出點(diǎn)G到△ABC各邊的距離相等,故③正確;
①∵∠ABC和∠ACB的平分線相交于點(diǎn)G,
∴∠EBG=∠CBG,∠BCG=∠FCG.
∵EF∥BC,
∴∠CBG=∠EGB,∠BCG=∠CGF,
∴∠EBG=∠EGB,∠FCG=∠CGF,
∴BE=EG,GF=CF,
∴EF=EG+GF=BE+CF,故本小題正確;
②∵∠ABC和∠ACB的平分線相交于點(diǎn)G,
∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°-∠A),
∴∠BGC=180°-(∠GBC+∠GCB)=180°-(180°-∠A)=90°+∠A,故本小題正確;
∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,
∴點(diǎn)G到△ABC各邊的距離相等,故③正確
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】11月5日晚在西昌衛(wèi)星發(fā)射中心成功以“一箭雙星”方式發(fā)射第24顆、第25顆北斗導(dǎo)航衛(wèi)星,“中國(guó)的北斗,世界的北斗”,北斗衛(wèi)星系統(tǒng)是由中國(guó)自主研發(fā)的全球領(lǐng)先的衛(wèi)星導(dǎo)航系統(tǒng),這套天羅地網(wǎng)在不久的將來(lái)會(huì)造福人類、服務(wù)全球.第三期北斗系統(tǒng)總項(xiàng)目預(yù)算國(guó)撥總投資為240億元,分技術(shù)、基建、設(shè)備三個(gè)項(xiàng)目投資,基建項(xiàng)目投資占技術(shù)項(xiàng)目投資的,設(shè)備項(xiàng)目投資比技術(shù)項(xiàng)目投資少40%,由于物價(jià)的上漲,總項(xiàng)目的實(shí)際總投資隨之增長(zhǎng),基建項(xiàng)目投資的增長(zhǎng)率是技術(shù)項(xiàng)目投資增長(zhǎng)率的2.5倍,設(shè)備項(xiàng)目投資的增長(zhǎng)率達(dá)到基建項(xiàng)目投資增長(zhǎng)率的2倍.
(1)三個(gè)項(xiàng)目的預(yù)算投資分別是多少億元?
(2)由于技術(shù)工人齊心協(xié)力,整套導(dǎo)航系統(tǒng)提前半年交付使用,導(dǎo)航系統(tǒng)每月可供1000萬(wàn)臺(tái)導(dǎo)航設(shè)備使用,每臺(tái)導(dǎo)航設(shè)備的平均月使用費(fèi)為40元,這樣,可將提前半年使用的收益的70%用于該項(xiàng)目的實(shí)際投資,減少了國(guó)撥投資,使預(yù)算國(guó)撥總投資減少的百分率與技術(shù)項(xiàng)目投資的增長(zhǎng)率相同,問(wèn)第三期北斗系統(tǒng)工程的實(shí)際總投資是多少億元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),以線段OA為邊在第四象限內(nèi)作等邊三角形△AOB,點(diǎn)C為x正半軸上一動(dòng)點(diǎn)(OC>2),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形△CBD連接DA并延長(zhǎng)交y軸于點(diǎn)E.
(1)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,△OBC和△ABD全等嗎?請(qǐng)說(shuō)明理由;
(2)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,∠CAD的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出∠CAD的度數(shù);如果變化請(qǐng)說(shuō)明理由;
(3)探究當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí),以A,E,C為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,點(diǎn)A、B的橫坐標(biāo)分別為a、,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,且a、m滿足為常數(shù).
若一次函數(shù)的圖象經(jīng)過(guò)A、B兩點(diǎn).
當(dāng)、時(shí),求k的值;
若y隨x的增大而減小,求d的取值范圍;
當(dāng)且、時(shí),判斷直線AB與x軸的位置關(guān)系,并說(shuō)明理由;
點(diǎn)A、B的位置隨著a的變化而變化,設(shè)點(diǎn)A、B運(yùn)動(dòng)的路線與y軸分別相交于點(diǎn)C、D,線段CD的長(zhǎng)度會(huì)發(fā)生變化嗎?如果不變,求出CD的長(zhǎng);如果變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽查部分學(xué)生做了一次問(wèn)卷調(diào)查,要求學(xué)生選出自己最喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
該調(diào)查的樣本容量為______,______,“第一版”對(duì)應(yīng)扇形的圓心角為______;
請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
若該校有1000名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡“第三版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E,F分別在AB,BC,AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù);
(3)若∠A=∠DEF,判斷△DEF是否為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬(wàn)元) | 2 |
種植樹(shù)木利潤(rùn)y1(萬(wàn)元) | 4 |
種植花卉利潤(rùn)y2(萬(wàn)元) | 2 |
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
(3)若該專業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,點(diǎn)B在x軸上,且.
求點(diǎn)B的坐標(biāo);
求的面積;
在y軸上是否存在P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com