如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數(shù)關系式.x為何值時,S有最大值?并求出S的最大值.
(1)證明:∵AB=BC,
∴∠A=∠C,
∵PE∥AB,
∴∠CPE=∠A,
∴∠CPE=∠C,
∴△PCE是等腰三角形;
(2)解:∵△PCE是等腰三角形,EM⊥CP,
∴CM=CP=,tanC=tanA=k,
∴EM=CM•tanC=•k=,
同理:FN=AN•tanA=•k=4k﹣,
由于BH=AH•tanA=×8•k=4k,
而EM+FN=+4k﹣=4k,
∴EM+FN=BH;
(3)解:當k=4時,EM=2x,F(xiàn)N=16﹣2x,BH=16,
所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,
S=S△ABC﹣S△PCE﹣S△APF,xK b1. C om
=64﹣x2﹣(8﹣x)2,
=﹣2x2+16x,
配方得,S=﹣2(x﹣4)2+32,
所以,當x=4時,S有最大值32.
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(,0),點P為斜邊OB上的一動點,則PA+PC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知,,是平面直角坐標系中三點.
(1)請你畫出ABC關于原點O對稱的A1B1C1 ;
(2)請寫出點A關于y軸對稱的點A2的坐標.若將點A2向上平移h個單位,使其落在A1B1C1內部,指出h的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com