【題目】閱讀理解題

在平面直角坐標系xOy中,點P(x0,y0)到直線Ax+By+C=0(A2+B2≠0)的距離公式為:d=,

例如,求點P(1,3)到直線4x+3y﹣3=0的距離.

解:由直線4x+3y﹣3=0知:A=4,B=3,C=﹣3

所以P(1,3)到直線4x+3y﹣3=0的距離為:d==2

根據(jù)以上材料,解決下列問題:

(1)求點P1(0,0)到直線3x﹣4y﹣5=0的距離.

(2)若點P2(1,0)到直線x+y+C=0的距離為,求實數(shù)C的值.

【答案】(1)d=1;(2)C1=﹣3,C2=1.

【解析】

(1)根據(jù)點到直線的距離公式計算即可;
(2)根據(jù)點到直線的距離公式,列出方程即可解決問題.

解:(1)點P1(0,0)到直線3x﹣4y﹣5=0的距離

2

|C+1|=2,

C+1=±2,

C1=3,C2=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某長途汽車客運公司規(guī)定旅客可以免費攜帶一定質量的行李,當行李的質量超過規(guī)定時,需付的行李費y(元)與行李質量x(kg)之間的函數(shù)表達式為,這個函數(shù)的圖像如圖所示,求:

(1)kb的值;

(2)旅客最多可免費攜帶行李的質量;

(3)行李費為4~15元時,旅客攜帶行李的質量為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經過記錄分析發(fā)現(xiàn),當銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關系可近似地看作一次函數(shù),其圖象如圖所示.

(1)求y與x的函數(shù)關系式.

(2)設商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關系式;

(3)如果想要每月獲得2400元的利潤,那么銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠C90°,BD平分∠ABCAC于點D,DE垂直平分線段AB

1)求∠A

2)若DE2cm,BD4cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(直接開平方法)②(用配方法)③(用因式分解法)

. .

. .x-2)(x-5)=-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小方格的邊長為1,已知點A(2,2),把點A先向左平移4個單位,再向下平移2個單位到達點B;把點B先向右平移2個單位,再向下平移4個單位到達點C.

(1)在圖中畫出△ABC,并直接寫出B,C兩點的坐標:B( )C( ).

(2)求△ABC的面積.

(3)判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答.

(1)把ABC繞點P旋轉180°得A′B′C′.

(2)把ABC向右平移7個單位得A″B″C″.

(3)A′B′C′與A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標;

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

同步練習冊答案