【題目】如圖,在中,,,點(diǎn)DAC的中點(diǎn),直角的兩邊分別交AB、BC于點(diǎn)EF,給出以下結(jié)論:①;②;③;④;⑤是等腰直角三角形. 當(dāng)內(nèi)繞頂點(diǎn)D旋轉(zhuǎn)時(shí)(點(diǎn)E不與點(diǎn)A、B重合),上述結(jié)論始終成立的有____________個(gè).

【答案】4

【解析】

ED垂直于FD,BD垂直于AC,利用同角的余角相等得到一對(duì)角相等,再由三角形ABC為等腰直角三角形得到BD=CD,且∠EBD=C=45°,利用ASA得到三角形BED與三角形CFD全等,利用全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等即可做出判斷.

EDFDBDAC,

∴∠BDE+BDF=90°,∠BDF+FDC=90°,

∴∠BDE=FDC

B、E、D、F四點(diǎn)共圓,

∴∠BFE=BDE

∴∠BFE=CDF,選項(xiàng)④正確;

∵△ABC為等腰直角三角形,BDAC,

∴∠EBD=C=45°,BD=CD

BEDCFD中,

,

∴△BED≌△CFDASA),

BE=CF,

AE=BF,選項(xiàng)①正確;

DE=DF,

∴△DEF為等腰直角三角形,選項(xiàng)⑤正確;

S四邊形BEDF=SBED+SBDF=SCFD+SBDF=SBDC=SABC,選項(xiàng)②正確.

BD是定值,EFDF的變化而變化,只有當(dāng)DFBC時(shí),EF=BD,

∴③不正確,

∴上述結(jié)論中始終成立的有4個(gè).

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.

(1)試判斷直線EF與O的位置關(guān)系,并說(shuō)明理由;

(2)若OA=2,A=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有些數(shù)學(xué)題,表面上看起來(lái)無(wú)從下手,但根據(jù)圖形的特點(diǎn),可補(bǔ)全成為特殊的圖形,然后根據(jù)特殊幾何圖形的性質(zhì)去考慮,常?梢垣@得簡(jiǎn)捷解法.根據(jù)閱讀,請(qǐng)解答問(wèn)題:如圖所示,已知△ABC的面積為16cm2AD平分∠BAC,且ADBD于點(diǎn)D,則△ADC的面積為___________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中放有除顏色外完全相同的5個(gè)小球,其中3個(gè)紅球,2個(gè)白球,一次從中隨機(jī)摸出兩個(gè)球均為白球的概率為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校積極開展陽(yáng)光體育活動(dòng),共開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,童威隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出)

(1)本次被調(diào)查的學(xué)生人數(shù)為  ,扇形統(tǒng)計(jì)圖中跑步所對(duì)的圓心角為 度.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)全校最喜愛(ài)籃球的人數(shù)比最喜愛(ài)足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,在上取一點(diǎn),在上取一點(diǎn),使,過(guò)點(diǎn)于點(diǎn).交于點(diǎn),若,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在中,,,若動(dòng)點(diǎn)P從點(diǎn)A開始沿著的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t.

(1)當(dāng)時(shí),的面積是___________;

(2)如圖(2)當(dāng)t為何值時(shí),AP平分;

(3)當(dāng)t為何值時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,DCAE,AEBC邊上的中線,過(guò)點(diǎn)CCFAE,垂足為點(diǎn)F,過(guò)點(diǎn)BBDBCCF的延長(zhǎng)線于點(diǎn)D.

(1)求證:ACCB; (2)AC12 cm,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E, F在直線AC上,DF=BE, AFD=CEB,下列條件中不能判斷ADF≌△CBE的是( )

A.D=BB.AD=CBC.AE=CFD.AD// BC

查看答案和解析>>

同步練習(xí)冊(cè)答案