【題目】已知∠AOB60°OC是∠AOB的平分線,點DOC上一點,過D作直線DEOA,垂足為點E,且直線DEOB于點F,如圖所示.若DE2,則DF_____

【答案】4

【解析】

過點DDMOB,垂足為M,則DM=DE=2,在RtOEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在RtDMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.

過點DDMOB,垂足為M,如圖所示.

OC是∠AOB的平分線,

DMDE2

RtOEF中,∠OEF90°,∠EOF60°,

∴∠OFE30°,即∠DFM30°.

RtDMF中,∠DMF90°,∠DFM30°,

DF2DM4

故答案為:4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:是最小的正整數(shù),且、滿足,請回答問題:

1)請直接寫出、的值:________________________;

2、所對應的點分別為、、,點是數(shù)軸上的一個動點,其對應的數(shù)為,當點在02之間(即)運動時,請化簡(請寫出化簡過程);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019 4 27 日,第二屆“一帶一路”國際合作高峰論壇圓滿閉幕.“一帶一路”已成為我國參與全球開放合作、改善全球經(jīng)濟治理體系、促進全球共同發(fā)展繁榮、推動構(gòu)建人類命運共同體的中國方案.其中中歐班列見證了“一帶一路”互聯(lián)互通的跨越式發(fā)展,年運送貨物總值由 2011 年的不足 6 億美元,發(fā)展到 2018 年的約 160 億美元.下面是 2011-2018 年中歐班列開行數(shù)量及年增長率的統(tǒng)計圖.

根據(jù)圖中提供的信息填空:

12018 年,中歐班列開行數(shù)量的增長率是_____;

2)如果 2019 年中歐班列的開行數(shù)量增長率不低于 50%,那么 2019 年中歐班列開行數(shù)量至少是_____列.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意一點 P 和線段 a.若過點 P 向線段 a 所在直線作垂線,若垂足落在線段 a 上,則稱點 P 為線段a 的內(nèi)垂點.在平面直角坐標系 xOy 中,已知點 A(-1,0),B(2,0 ) ,C(0,2)

1)在點 M10),N32),P-1,-3)中,是線段 AB 的內(nèi)垂點的是 ;

2)已知點 D-3,2),E-3,4).在圖中畫出區(qū)域并用陰影表示,使區(qū)域內(nèi)的每個點均為 RtCDE三邊的內(nèi)垂點;

3)已知直線 m x 軸交于點 B,與 y 軸交于點 C,將直線 m 沿 y 軸平移 3 個單位長度得到直線 n 若存在點 Q,使線段 BQ 的內(nèi)垂點形成的區(qū)域恰好是直線 m n 之間的區(qū)域(包括邊界),直接寫出點 Q 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=50°,∠B=30°,點DAB邊上,連接CD,若△ACD為直角三角形,則∠BCD的度數(shù)為________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),

選取其中三條線段,使得這三條線段能圍成一個直角三角形.

答:選取的三條線段為

只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OC、OD在∠AOB內(nèi)部,∠AOB,∠COD,分別作∠AOC和∠BOD的平分線OM、ON,

1)當130°,40°時,請你填空:∠1+∠3______°,∠MON______°;

2)聰明的小芳通過探究發(fā)現(xiàn),當射線OC、OD的位置在∠AOB內(nèi)變化時,∠MON之間總滿足∠MON,你是否認同她的這一結(jié)論?請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式:···①,···②,…③,…

探索以上式子的規(guī)律.

1)第7個式子是_______;

2)試寫出第個等式,并說明第個等式成立;

3)根據(jù)以上規(guī)律寫出第2019個式子:______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BD為∠ABC的平分線,DEBCE,且AB+BC=2BE.

(1)求證:∠BAD+BCD=180°;

(2)若將條件“AB+BC=2BE”與結(jié)論“∠BAD+BCD=180°”互換,結(jié)論還成立嗎?請說明理由。

查看答案和解析>>

同步練習冊答案