【題目】對于任意一點 P 和線段 a.若過點 P 向線段 a 所在直線作垂線,若垂足落在線段 a 上,則稱點 P 為線段a 的內(nèi)垂點.在平面直角坐標系 xOy 中,已知點 A(-1,0),B(2,0 ) ,C(0,2).
(1)在點 M(1,0),N(3,2),P(-1,-3)中,是線段 AB 的內(nèi)垂點的是 ;
(2)已知點 D(-3,2),E(-3,4).在圖中畫出區(qū)域并用陰影表示,使區(qū)域內(nèi)的每個點均為 Rt△CDE三邊的內(nèi)垂點;
(3)已知直線 m 與 x 軸交于點 B,與 y 軸交于點 C,將直線 m 沿 y 軸平移 3 個單位長度得到直線 n . 若存在點 Q,使線段 BQ 的內(nèi)垂點形成的區(qū)域恰好是直線 m 和 n 之間的區(qū)域(包括邊界),直接寫出點 Q 的坐標.
【答案】(1)M,P;(2)見詳解;(3)(0.5,﹣1.5)或(3.5,1.5)
【解析】
(1)畫圖后根據(jù)定義可以判定;
(2)如圖2所示;
(3)分兩種情況:①n在m的下方,②n在m的上方,先確認m和n的解析式,n與x軸的交點為E,作BE的垂直平分線,與n的交點即是Q.
解:(1)如圖1所示:PA⊥AB,垂足為A,過M作AB的垂線,垂足為M,都在線段AB上,
所以線段AB的內(nèi)垂點的是:M,P;
故答案為:M,P;
(2)如圖2所示,
(3)分兩種情況:
①當n在m的下方時,如圖3,
∵B(2,0),C(0,2).
設BC的解析式為:y=kx+b,則,
解得:,
∴m:y=﹣x+2,
n:y=﹣x﹣1,
∴E(﹣1,0),
取BE的中點P,過P作BE的垂線交n于Q,
∵P(0.5,0),
∴當x=0.5時,y=﹣x﹣1=﹣1.5,
∴Q(0.5,﹣1.5);
②當直線n在直線m的上方時,如圖4,則n:y=﹣x+5,
同理得Q(3.5,1.5);
綜上,點Q的坐標為(0.5,﹣1.5)或(3.5,1.5).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,觀察二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:
①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.
其中正確的是( )
A.①② B.①④ C.②③ D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境
如圖 1,△ABC 中,沿∠BAC 的平分線 AB1 折疊,剪掉重疊部分;將余下部分沿∠B1A1C 的平分線 A1B2 折 疊,剪掉重疊部分;如此反復操作,沿 ∠Bn An C 的平分線 An Bn-1 折疊,點 Bn 與點 C 重合,我們就稱 ∠BAC是△ABC 的正角.
以圖 2 為例,△ABC 中,∠B=70°,∠C=35°,若沿∠BAC 的平分線 AB1 折疊,則∠AA1B=70°.沿 A1B1 剪掉重疊部分,在余下的△B1A1C 中,由三角形的內(nèi)角和定理可知∠A1B1C=35°,若沿∠B1A1C 的平分線 A1B2 第二次折疊,則點 B1 與點 C 重合. 此時,我們就稱∠BAC 是△ABC 的正角.
探究發(fā)現(xiàn)
(1)△ABC 中,∠B= 2∠C ,則經(jīng)過兩次折疊后,∠BAC 是不是△ABC 的正角? (填“是”或“不是” ) .
(2)小明經(jīng)過三次折疊發(fā)現(xiàn)∠BAC 是△ABC 的正角,則 ∠B 與∠C (不妨設 ∠B >∠C ) 之間的等量關系 為 .
根據(jù)以上內(nèi)容猜想:若經(jīng)過 n 次折疊 ∠BAC 是△ABC 的正角,則∠B 與 ∠C (不妨設∠B> ∠C ) 之間 的等量關系為 .
應用提升
(3)如果一個三角形的最小角是 10°,直接寫出此三角形另外兩個角的度數(shù),使得此三角形的三個角均是 它的正角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鎮(zhèn)政府想了解李家莊 130 戶家庭的經(jīng)濟情況,從中隨機抽取了部分家庭進行調(diào)查,獲得了他們的年收入(單位:萬元),并對數(shù)據(jù)(年收入)進行整理、描述和分析.下面給出了部分信息.
a.被抽取的部分家庭年收入的頻數(shù)分布直方圖和扇形統(tǒng)計圖如下(數(shù)據(jù)分組:0.9≤x<1.3,1.3≤x<1.7 , 1.7≤x<2.1, 2.1≤x<2.5, 2.5≤x<2.9 , 2.9≤x<3.3 )
b.家庭年收入在1.3≤x<1.7 這一組的是: 1.3 1.3 1.4 1.5 1.6 1.6
根據(jù)以上信息,完成下列問題:
(1)將兩個統(tǒng)計圖補充完整;
(2)估計李家莊有多少戶家庭年收入不低于 1.5 萬元且不足 2.1 萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點D在線段AB上,從點B出發(fā),以2cm/s的速度向終點A運動,設點D的運動時間為t秒。
(1)點D在運動t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB邊上的高為cm;
(3)點D在運動過程中,當△BCD為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC,∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,要使△ABC和△QPA全等,則AP= ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com