【題目】閱讀理解在數(shù)軸上,表示一個點在平面直角坐標(biāo)系中,表示一條直線,如圖(a)所示在數(shù)軸上,表示一條射線;在平面直角坐標(biāo)系中,表示的是直線及右側(cè)的區(qū)域;在平面直角坐標(biāo)系中,表示經(jīng)過兩點的一條直線在平面直線坐標(biāo)系中,表示的是直線及下方的區(qū)域如圖(b)所示,則表示的是直線及上方的區(qū)域如果x,y滿足,請在圖(c)中用陰影描出點所在的區(qū)域.

【答案】見解析

【解析】

先分別畫出直線、直線和直線x=0,然后找出各個不等式表示的區(qū)域,即可得出結(jié)論.

如圖所示.對于,當(dāng)x=0時,解得y=1,當(dāng)y=0時,解得x=2

表示經(jīng)過,兩點的一條直線,在平面直角坐標(biāo)系中畫出這條直線

表示的是直線及上方的區(qū)域;

對于,當(dāng)x=0時,解得y=3,當(dāng)y=0時,解得x=2

表示經(jīng)過兩點的一條直線,在平面直角坐標(biāo)系中畫出這條直線

表示的是直線及下方的區(qū)域;

直線x=0表示y軸,

x0表示y軸及右側(cè)的區(qū)域,

∴用陰影描出點所在的區(qū)域如下圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙OBC交于點D,過點D作∠ABD=ADE,交AC于點E.

(1)求證:DE為⊙O的切線.

(2)若⊙O的半徑為,AD=,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別是(﹣1,0)和(2,0),以OC為直徑作圓⊙P,AB切⊙P于點B,交y軸于點E.點M是劣弧上一動點,CMBP于點N,BMx軸于點D.

(1)求點E的坐標(biāo);

(2)當(dāng)點M在弧BO上運動時,PD﹣PN的值是否變化?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)一次函數(shù)的圖像上,位于x軸上方的點的橫坐標(biāo)的范圍是________

2)當(dāng)時,直線x軸的上方,則不等式的解集是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現(xiàn)計劃用120塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗),設(shè)用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某山區(qū)有23名中、小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費用需要元,一名小學(xué)生的學(xué)習(xí)費用需要元.某校學(xué)生積極捐助,初中各年級學(xué)生捐款數(shù)額與用其恰好捐助貧困中學(xué)生和小學(xué)生人數(shù)的部分情況如下表:

年級

捐款數(shù)額(元)

捐助貧困中學(xué)生人數(shù)(名)

捐助貧困小學(xué)生人數(shù)(名)

初一年級

4000

2

4

初二年級

4200

3

3

初三年級

7400

1)求的值;

2)初三年級學(xué)生的捐款解決了其余貧困中小學(xué)生的學(xué)習(xí)費用,請將初三年級學(xué)生可捐助的貧困中、小學(xué)生人數(shù)直接填入表中.(不需寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個長為8分米,寬為5分米高為7分米的長方體上,截去一個長為6分米寬為5分米,深為2分米的長方體后得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:

①abc0,

②a﹣b+c0

③2a=b,

④4a+2b+c0,

若點(﹣2,)和(,)在該圖象上,則

其中正確的結(jié)論是 (填入正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案