【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,根據(jù)查結(jié)果,把學(xué)生的安全意識分成淡薄、一般、較強、很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息,解答下列問題:

1)該校有1200名學(xué)生,現(xiàn)要對安全意識為淡薄、一般的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有多少名?

2)請將條形統(tǒng)計圖補充完整.

3)求出安全意識為較強的學(xué)生所占的百分比.

【答案】1300;(2)見解析;(345%

【解析】

1)根據(jù)一般的人數(shù)和所占的百分比求出調(diào)查的總?cè)藬?shù),用總?cè)藬?shù)乘以需要強化安全教育的學(xué)生所占的百分比即可;

2)用總?cè)藬?shù)減去其它層次的人數(shù),求出較強的人數(shù),從而補全統(tǒng)計圖;

3)用較強的人數(shù)除以總?cè)藬?shù)即可得出答案.

解:(1)調(diào)查的總?cè)藬?shù)是:18÷15%120(人),

全校需要強化安全教育的學(xué)生約有:1200×300(人);

2)較強的人數(shù)有120﹣12﹣18﹣3654(人),補圖如下:

3)安全意識為較強的學(xué)生所占的百分比是×100%45%

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,.點分別在邊,上運動,并保持,,,垂足分別為,.四邊形面積的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtCEF中,∠C=90°,∠CEF, CFE外角平分線交于點A,過點A分別作直線CE、CF的垂線,B、D為垂足.

(1)求證:四邊形ABCD是正方形,

(2)已知AB的長為6,求(BE+6)(DF+6)的值,

(3)借助于上面問題的解題思路,解決下列問題:若三角形PQR中,∠QPR=45°,一條高是PH,長度為6,QH=2,則HR= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20199月,在鄭州舉行的第十一屆全國少數(shù)民族運動會的龍舟比賽中,甲、乙兩隊在米的賽道上,所劃行的路程與時間之間的函數(shù)關(guān)系式如圖所示,下列說法錯誤的是(

A.乙隊比甲隊提前到達終點

B.當(dāng)乙隊劃行時,此時落后甲隊

C.后,乙隊比甲隊每分鐘快

D.開始,甲隊若要與乙隊同時到達終點,甲隊的速度需提高到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離ykm)與行駛時xh)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

1)寫出AB兩地直接的距離;

2)求出點M的坐標,并解釋該點坐標所表示的實際意義;

3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,AE=EB,MN=1,線段MN的兩端在CB,CD上滑動,當(dāng)CM為何值時,AEDCMN相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程沒有實數(shù)解的是( 。

A. =0 B. =x C. =1 D. ﹣2x+3=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解初中階段女生身高情況,從某中學(xué)初二年級120名女生中隨意抽出40名同齡女生的身高數(shù)據(jù),經(jīng)過分組整理后的頻數(shù)分布表及頻數(shù)分布直方圖如圖所示:

結(jié)合以上信息,回答問題:

1a=______b=______,c=______

2)請你補全頻數(shù)分布直方圖.

3)試估計該年級女同學(xué)中身高在160165cm的同學(xué)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC

(1)求證:∠BAC=CBP;

(2)求證:PB2=PCPA;

(3)當(dāng)AC=6,CP=3時,求sinPAB的值.

查看答案和解析>>

同步練習(xí)冊答案