【題目】某養(yǎng)殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AG∶BG=3∶2.設BG的長為2x米.
(1)用含x的代數(shù)式表示DF= ;
(2)x為何值時,區(qū)域③的面積為180平方米;
(3)x為何值時,區(qū)域③的面積最大?最大面積是多少?
【答案】(1)48-12x;(2)x為1或3;(3)x為2時,區(qū)域③的面積最大,為240平方米
【解析】
(1)將DF、EC以外的線段用x表示出來,再用96減去所有線段的長再除以2可得DF的長度;
(2)將區(qū)域③圖形的面積用關于x的代數(shù)式表示出來,并令其值為180,求出方程的解即可;
(3)令區(qū)域③的面積為S,得出x關于S的表達式,得到關于S的二次函數(shù),求出二次函數(shù)在x取值范圍內(nèi)的最大值即可.
(1)48-12x
(2)根據(jù)題意,得5x(48-12x)=180,
解得x1=1,x2=3
答:x為1或3時,區(qū)域③的面積為180平方米
(3)設區(qū)域③的面積為S,則S=5x(48-12x)=-60x2+240x=-60(x-2)2+240
∵-60<0,∴當x=2時,S有最大值,最大值為240
答:x為2時,區(qū)域③的面積最大,為240平方米
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,AB=8,點M在圓O上,∠MOB=60°,N是的中點,P為AB上一動點,則PM+PN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關系式為(,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關系如下表:
時間第天 | 1 | 2 | 3 | … | 80 |
銷售單價(元/) | 49. 5 | 49 | 48. 5 | … | 10 |
(1)寫出銷售單價(元/)與時間第天之間的函數(shù)關系式;
(2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合實踐:
問題情境
數(shù)學活動課上,老師和同學們在正方形中利用旋轉變換探究線段之間的關系探究過程如下所示:如圖I,在正方形中,點為邊的中點.將以點為旋轉中心,順時針方向旋轉,當點的對應點落在邊上時,連接.
“興趣小組”發(fā)現(xiàn)的結論是:;
“卓越小組”發(fā)現(xiàn)的結論是:.
解決問題
(1)請你證明“興趣小組”和“卓越小組”發(fā)現(xiàn)的結論;
拓展探究
證明完“興趣小組”和“卓越小組”發(fā)現(xiàn)的結論后,“智慧小組”提出如下問題:如圖2,連接,若正方形的邊長為,求出的長度.
(2)請你幫助智慧小組寫出線段的長度.(直接寫出結論即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大學生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是( )
操作組 | 管理組 | 研發(fā)組 | |
日工資(元/人) | 260 | 280 | 300 |
人數(shù)(人) | 4 | 4 | 4 |
A.團隊平均日工資不變B.團隊日工資的方差不變
C.團隊日工資的中位數(shù)不變D.團隊日工資的極差不變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為AD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.
(1)如圖1,在BC上找點F,使點F是BC的中點;
(2)如圖2,連接AC,在AC上取兩點P,Q,使P,Q是AC的三等分點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖二次函數(shù)的圖像交軸于、,交軸于,直線平行于周,與拋物線另一個交點為.
(1)求函數(shù)的解析式;
(2)若是軸上的動點,是拋物線上的動點,求使以、、、為頂點的四邊形是平行四邊形的的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板按如圖1所示放置,其中點在邊上,,斜邊.將三角板繞點順時針旋轉,記旋轉角為.
(1)在圖1中,設與的交點為,則線段AF的長為 ;
(2)當時,三角板旋轉到,的位置(如圖2所示),連接,請判斷四邊形的形狀,并證明你的結論;
(3)當三角板旋轉到的位置(如圖3所示)時,此時點恰好在的延長線上.①求旋轉角的度數(shù);②求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com