【題目】在同一平面直角坐標(biāo)系中,函數(shù)與的圖象可能是( )
A.B.C.D.
【答案】A
【解析】
先根據(jù)圖形中給出的一次函數(shù)圖像確定a,b的符號,進(jìn)而運(yùn)用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖像是否符合題意,根據(jù)選項(xiàng)逐一討論解析,即可解決問題.
A:對于直線y=bx+a來說,由圖像可以判斷,a>0,b>0;對于拋物線來說,對稱軸>0,應(yīng)在y軸右側(cè),符合題意,故選A.
B: 對于直線y=bx+a來說,由圖像可以判斷,a<0,b<0;對于拋物線來說,開口應(yīng)向下,不符合題意,圖像錯誤.
C:對于直線y=bx+a來說,由圖像可以判斷,a<0,b>0;對于拋物線來說,開口向下,對稱軸<0,應(yīng)在y軸左側(cè),不符合題意,圖像錯誤.
D:對于直線y=bx+a來說,由圖像可以判斷,a>0,b>0,;對于拋物線來說,開口向下,a<0,不符合題意,圖像錯誤.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+m.
(1)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,求直線AB和二次函數(shù)圖象的解析式;
(2)在線段AB上有一動點(diǎn)P(不與A,B兩點(diǎn)重合),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)D,是否存在一點(diǎn)P使線段PD的長有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①;②頂點(diǎn)坐標(biāo)為;③;④;⑤.正確的有_______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個動點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時,AM的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,C兩點(diǎn),與y軸交于B點(diǎn),拋物線的頂點(diǎn)為點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(0,﹣3).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上,為邊上的一點(diǎn).
(Ⅰ)線段的值為______________;
(Ⅱ)在如圖所示的網(wǎng)格中,是的角平分線,在上求一點(diǎn),使的值最小,請用無刻度的直尺,畫出和點(diǎn),并簡要說明和點(diǎn)的位置是如何找到的(不要求證明)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動中,小林在南濱河路上的A,B兩點(diǎn)處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程x2+2x+k+1=0的實(shí)數(shù)解是x1和x2.
(1)求k的取值范圍;
(2)如果x1+x2﹣x1x2<﹣1且k為整數(shù),求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com