【題目】如圖,ABOC放置在直角坐標(biāo)系中,點(diǎn)A(10,4),點(diǎn)B(6,0),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C.
(1)求該反比例函數(shù)的表達(dá)式.
(2)記AB的中點(diǎn)為D,請(qǐng)判斷點(diǎn)D是否在該反比例函數(shù)的圖象上,并說明理由.
(3)若P(a,b)是反比例函數(shù)y=的圖象(x>0)的一點(diǎn),且S△POC<S△DOC,則a的取值范圍為_____.
【答案】(1)y=;(2)D點(diǎn)在反比例函數(shù)圖象上;(3)2<a<4或4<a<8
【解析】
根據(jù)題意可得,可得C點(diǎn)坐標(biāo),則可求反比例函數(shù)解析式
根據(jù)題意可得D點(diǎn)坐標(biāo),代入解析式可得結(jié)論.
由圖象可發(fā)現(xiàn),,的面積和等于ABCD的面積一半,即,分點(diǎn)P在OC上方和下方討論,設(shè),用a表示的面積可得不等式,可求a的范圍.
解:(1)∵ABOC是平行四邊形
∴AC=BO=6
∴C(4,4)
∵反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C.
∴4=
∴k=16
∴反比例函數(shù)解析式y=
(2)∵點(diǎn)A(10,4),點(diǎn)B(6,0),
∴AB的中點(diǎn)D(8,2)
當(dāng)x=8時(shí),y==2
∴D點(diǎn)在反比例函數(shù)圖象上.
(3)根據(jù)題意當(dāng)點(diǎn)P在OC的上方,作PF⊥y軸,CE⊥y軸
設(shè)P(a,)
S△COD=SABOC﹣S△ACD﹣S△OBD
∴S△COD=SABOC=12
∵S△POC<S△COD
∴,
∴a>2或a<﹣8(舍去)
當(dāng)點(diǎn)P在OC的下方,則易得4<a<8
綜上所述:2<a<4或4<a<8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為3,D、E分別是AB、AC上的點(diǎn),且AD=AE=2,將△ADE沿直線DE折疊,點(diǎn)A的落點(diǎn)記為A′,則四邊形ADA′E的面積S1與△ABC的面積S2之間的關(guān)系是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎車從郵局出發(fā),先向西騎行 2 km 到達(dá) A 村,繼續(xù)向西騎行 3 km 到達(dá) B 村, 然后向東騎行 9 km 到達(dá) C 村,最后回到郵局.
(1)以郵局為原點(diǎn),以向東方向?yàn)檎较,?/span> 1 cm 表示 1 km 畫數(shù)軸,并在該數(shù)軸上表示 A,B,C 三個(gè)村莊的位置;
(2)C 村離 A 村有多遠(yuǎn)?
(3)郵遞員一共騎行了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為11,點(diǎn)B對(duì)應(yīng)的數(shù)為b,點(diǎn)C在點(diǎn)B右側(cè),長度為3個(gè)單位的線段BC在數(shù)軸上移動(dòng),
(1)如圖1,當(dāng)線段BC在O,A兩點(diǎn)之間移動(dòng)到某一位置時(shí),恰好滿足線段AC=OB,求此時(shí)b的值;
(2)線段BC在數(shù)軸上沿射線AO方向移動(dòng)的過程中,是否存在AC﹣OB=AB?若存在,求此時(shí)滿足條件的b的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的知識(shí)競賽活動(dòng)中,老師將八年級(jí)一班和二班全部學(xué)生的成績整理并繪制成如下統(tǒng)計(jì)表:
得分(分) 人數(shù)(人) 班級(jí) | 50 | 60 | 70 | 80 | 90 | 100 |
一班 | 2 | 5 | 10 | 13 | 14 | 6 |
二班 | 4 | 4 | 16 | 2 | 12 | 12 |
(1)現(xiàn)已知一班和二班的平均分相同,請(qǐng)求出其平均分.
(2)請(qǐng)分別求出這兩班的中位數(shù)和眾數(shù),并進(jìn)一步分析這兩個(gè)班級(jí)在這次競賽中成績的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形 ABCD 中,AB=6cm,BC=3cm,E 為 CD 的中點(diǎn).動(dòng)點(diǎn) P 從 A 點(diǎn)出發(fā),以每秒1cm 的速度沿 A﹣B﹣C﹣E 運(yùn)動(dòng),最終到達(dá)點(diǎn) E.若點(diǎn) P 運(yùn)動(dòng)時(shí)間為 x 秒,則 x=_______時(shí),△APE 的面積等于 6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時(shí),水面離橋孔頂部 ,因降暴雨水面上升 .
(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號(hào))
(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)若該方程的兩個(gè)實(shí)數(shù)根、滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華思考解決如下問題:
原題:如圖1,點(diǎn)P,Q分別在菱形ABCD的邊BC,CD上,∠PAQ=∠B,求證:AP=AQ.
(1)小華進(jìn)行探索,若將點(diǎn)P,Q的位置特殊化:把∠PAQ繞點(diǎn)A旋轉(zhuǎn)得到∠EAF,使AE⊥BC,點(diǎn)E、F分別在邊BC、CD上,如圖2.此時(shí)她證明了AE=AF,請(qǐng)你證明;
(2)由以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作AE⊥BC,AF⊥CD,垂足分別為E,F.請(qǐng)你繼續(xù)完成原題的證明;
(3)如果在原題中添加條件:AB=4,∠B=60°,如圖1,求四邊形APCQ的周長的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com