在△ABC中,AD是BC邊上的高,∠C=45°,sinB=,AD=1.求BC的長.


              解:在Rt△ABD中,∵

又∵AD=1,

∴AB=3,

∵BD2=AB2﹣AD2,

在Rt△ADC中,∵∠C=45°,

∴CD=AD=1.

∴BC=BD+DC=+1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖.在△ABC中,BC>AC,點D在BC上,且DC=AC,∠ACB的平分線CF交AD于點F,點E是AB的中點,連接EF.

(1)求證:EF∥BC;

(2)若四邊形BDFE的面積為6,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:如圖,四邊形ABCD為平行四邊形,以CD為直徑作⊙O,⊙O與邊BC相交于點F,⊙O的切線DE與邊AB相交于點E,且AE=3EB.

(1)求證:△ADE∽△CDF;

(2)當(dāng)CF:FB=1:2時,求⊙O與▱ABCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,CD=4,AC=6,則sinB的值是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,如果∠A、∠B滿足|tanA﹣1|+(cosB﹣2=0,那么∠C= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC的項點都在正方形網(wǎng)格的格點上,則cosC的值為( 。

A.           B.          C.           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在地面上的點A處測得樹頂B的仰角為α度,AC=7米,則樹高BC為   米(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,將邊長為4個單位的等邊△ABC沿邊BC向右平移2個單位得到△DEF,則四邊形ABFD的周長為( 。

A.  12            B.16            C.20            D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


兩張全等的直角三角形紙片如圖擺放,期中B、D重合,B、C、E在同一條直線上,已知AB=4,BC=3,現(xiàn)將△DEF沿射線BC方向平行移動,在整個運(yùn)動過程中,要使△ACE成為等腰三角形,求△DEF平移的距離.

查看答案和解析>>

同步練習(xí)冊答案