【題目】如圖,在△ABC中,∠ACB=90°,AC=4BC=2PAB邊上一動(dòng)點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)EP的右側(cè),且PE=1,連結(jié)CEP從點(diǎn)A出發(fā),沿AB方向運(yùn)動(dòng),當(dāng)E到達(dá)點(diǎn)B時(shí),P停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積S1+S2的大小變化情況是( )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

【答案】C

【解析】試題分析:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,

∴AB===2,設(shè)PD=x,AB邊上的高為h,

h==

∵PD∥BC,

=,

∴AD=2x,AP=x,

∴S1+S2=2xx+2﹣1﹣x=x2﹣2x+4﹣=x﹣12+3﹣,

當(dāng)0x1時(shí),S1+S2的值隨x的增大而減小,

當(dāng)1≤x≤2時(shí),S1+S2的值隨x的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形有個(gè)角是 90,則另兩個(gè)角分別是(

A. 30,60B. 45,45C. 45,60D. 20,70

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為慶祝開(kāi)業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開(kāi)業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、44個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).

1)請(qǐng)用列表或樹(shù)狀圖(樹(shù)狀圖也稱(chēng)樹(shù)形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來(lái);

2)假如你參加了該超市開(kāi)業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率P

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ax2﹣6axy+9ay2=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列二次函數(shù)中,經(jīng)過(guò)原點(diǎn)的是( )

A. y=x2-1 B. y=(x-1)2 C. y=x2-3x+2 D. y=-(x-2)2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程有一個(gè)根是1,那么這個(gè)方程可以是_____.(寫(xiě)一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器原價(jià)為60萬(wàn)元,如果每年的折舊率為x,兩年后這臺(tái)機(jī)器的價(jià)位為y萬(wàn)元,則y與x之間的函數(shù)表達(dá)式為( )

A. y=60(1-x)2 B. y=60(1-x) C. y=60-x2 D. y=60(1+x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】互聯(lián)網(wǎng)微商經(jīng)營(yíng)已成為大眾創(chuàng)業(yè)新途徑.某微信平臺(tái)上一件商品進(jìn)價(jià)為180元,按標(biāo)價(jià)的八折銷(xiāo)售,仍可獲利60元,求這件商品的標(biāo)價(jià)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+b=3,ab=2,則a2b+ab2=

查看答案和解析>>

同步練習(xí)冊(cè)答案