【題目】如圖,矩形ABCD的對角線ACBD相交于點O,AB∶BC3∶2,過點BBE∥AC,過點CCE∥DB,BE,CE交于點E,連接DE,則tan∠EDC等于()

A.B.C.D.

【答案】A

【解析】

如圖,過點EEF⊥直線DC交線段DC延長線于點F,連接OEBC于點G.根據(jù)鄰邊相等的平行四邊形是菱形即可判斷四邊形OBEC是菱形,則OEBC垂直平分,易得EF=AD=BCCF=OE=AB.所以由銳角三角函數(shù)定義作答即可.

解:∵矩形ABCD的對角線AC、BD相交于點OABBC=32,
∴設(shè)AB=3x,BC=2x
如圖,過點EEF⊥直線DC交線段DC延長線于點F,連接OEBC于點G
BEAC,CEBD,
∴四邊形BOCE是平行四邊形,
∵四邊形ABCD是矩形,
OB=OC,
∴四邊形BOCE是菱形.


OEBC垂直平分,
EF=AD=BC=x,OEAB
∴四邊形AOEB是平行四邊形,
OE=AB,
CF=OE=AB=x
tanEDC=

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊的中點,分別是及其延長線上的點,

1)求證:;

2)連接,如果中,,那么四邊形的形狀一定是________.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,AB=8,B=120°,沿過菱形不同的頂點裁剪兩次,再將所裁下的圖形拼接,若恰好能無縫,無重疊的拼接成一個矩形,則所得矩形的對角線長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點,ODBC于點D,過點C作O的切線,交OD的延長線于點E,連接BE.

(1)求證:BE與O相切;

(2)設(shè)OE交O于點F,若DF=1,BC=2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AD平分∠BACBC于點D,點OAB上一點,以O為圓心,AO為半徑的圓經(jīng)過點D

1)求證:BCO相切;

2)若BDAD,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?

3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,OABCD的對稱中心,點A的坐標為(2,-2)AB=5,AB//x軸,反比例函數(shù)y=的圖象經(jīng)過點D,將ABCD沿y軸向下平移,使點C的對應(yīng)點C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為(  )

A.10B.18C.20D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是邊長為6的等邊ABC的外接圓,點D,E分別是BC,AC上兩點,且BDCE,連接AD,BE相交于點P,延長線段BE交⊙O于點F,連接CF

1)求證:ADFC;

2)連接PC,當(dāng)PEC為直角三角形時,求tanACF的值.

查看答案和解析>>

同步練習(xí)冊答案