【題目】水池有若干個(gè)進(jìn)水口與出水口,每個(gè)口進(jìn)出水的速度如圖1、圖2所示,只開1個(gè)進(jìn)水口持續(xù)15小時(shí)可將水池注滿.
(1)某段時(shí)間內(nèi)蓄水量V(m3)與時(shí)間t(h)的關(guān)系如圖3所示,0~3時(shí)只開2個(gè)進(jìn)水口,3~b時(shí)只開1個(gè)進(jìn)水口與1個(gè)出水口,9~c只開1個(gè)出水口,求證:a=b+c.
(2)若同時(shí)開2個(gè)出水口與1個(gè)進(jìn)水口,多久可將滿池的水排完?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是直角三角形,,,直線經(jīng)過點(diǎn),分別過點(diǎn)、向直線作垂線,垂足分別為、.
(1)如圖1,當(dāng)點(diǎn),位于直線的同側(cè)時(shí),證明:.
(2)如圖2,若點(diǎn),在直線的異側(cè),其它條件不變,是否依然成立?請(qǐng)說明理由.
(3)圖形變式:如圖3,銳角中,,直線經(jīng)過點(diǎn),點(diǎn),分別在直線上,點(diǎn),位于的同一側(cè),如果,請(qǐng)找到圖中的全等三角形,并直接寫出線段,,的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=3,現(xiàn)將紙片折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)記為點(diǎn)P,折痕為EF(點(diǎn)E、F是折痕與矩形的邊的交點(diǎn)),再將紙片還原.
(1)若點(diǎn)P落在矩形ABCD的邊AB上(如圖1).
①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),∠DEF= °,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),∠DEF= °.
②當(dāng)點(diǎn)E在AB上時(shí),點(diǎn)F在DC上時(shí)(如圖2),若AP=,求四邊形EPFD的周長.
(2)若點(diǎn)F與點(diǎn)C重合,點(diǎn)E在AD上,線段BA與線段FP交于點(diǎn)M(如圖3),當(dāng)AM=DE時(shí),請(qǐng)求出線段AE的長度.
(3)若點(diǎn)P落在矩形的內(nèi)部(如圖4),且點(diǎn)E、F分別在AD、DC邊上,請(qǐng)直接寫出AP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如果+(n+6)2=0,求(m+n)2008+m3的值
(2)已知實(shí)數(shù)a,b,c,d,e,且ab互為倒數(shù),c,d互為相反數(shù),e的絕對(duì)值為2,求×ab++e的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海市水務(wù)局對(duì)某小區(qū)居民生活用水情況進(jìn)行了調(diào)査.隨機(jī)抽取部分家庭進(jìn)行統(tǒng)計(jì),繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請(qǐng)根據(jù)圖表,解答下列問題:
月均用水量(單位:噸 | 頻數(shù) | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計(jì) | d | 1.00 |
(1)b= ,c= ,并補(bǔ)全頻數(shù)分布直方圖;
(2)為鼓勵(lì)節(jié)約用水用水,現(xiàn)要確定一個(gè)用水量標(biāo)準(zhǔn)P(單位:噸),超過這個(gè)標(biāo)準(zhǔn)的部分按1.5倍的價(jià)格收費(fèi),若要使60%的家庭水費(fèi)支出不受影響,則這個(gè)用水量標(biāo)準(zhǔn)P= 噸;
(3)根據(jù)該樣本,請(qǐng)估計(jì)該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時(shí),猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);
(3)若BC= 4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(shí)(如圖2),若OF=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會(huì)伸長,(在彈性限度內(nèi))已知一彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:
物體的質(zhì)量 | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧的長度 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 |
(1)當(dāng)物體的質(zhì)量為時(shí),彈簧的長度是多少?
(2)如果物體的質(zhì)量為,彈簧的長度為,根據(jù)上表寫出與x的關(guān)系式;
(3)當(dāng)物體的質(zhì)量為時(shí),求彈簧的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com