【題目】定義:既相等又垂直的兩條線段稱為“等垂線段”,如圖1,在中,,,點(diǎn)、分別在邊、上,,連接、,點(diǎn)、、分別為、、的中點(diǎn),且連接、.
觀察猜想
(1)線段與 “等垂線段”(填“是”或“不是”)
猜想論證
(2)繞點(diǎn)按逆時針方向旋轉(zhuǎn)到圖2所示的位置,連接,,試判斷與是否為“等垂線段”,并說明理由.
拓展延伸
(3)把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出與的積的最大值.
【答案】(1)是;(2)是,理由詳見解析;(3)49
【解析】
(1)根據(jù)題意,利用等腰三角形和三角形中位線定理得出,∠MPN=90°判定即可;
(2)由旋轉(zhuǎn)和三角形中位線的性質(zhì)得出,再由中位線定理進(jìn)行等角轉(zhuǎn)換,得出∠MPN=90°,即可判定;
(3)由題意,得出最大時,與的積最大,點(diǎn)在的延長線上,再由(1)(2)結(jié)論,得出與的積的最大值.
(1)是;
∵,
∴DB=EC,∠ADE=∠AED=∠B=∠ACB
∴DE∥BC
∴∠EDC=∠DCB
∵點(diǎn)、、分別為、、的中點(diǎn)
∴PM∥EC,PN∥BD,
∴,∠DPM=∠DCE,∠PNC=∠DBC
∵∠DPN=∠PNC+∠DCB
∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°
∴線段與是“等垂線段”;
(2)由旋轉(zhuǎn)知
∵,
∴≌()
∴,
利用三角形的中位線得,,
∴
由中位線定理可得,
∴,
∵
∴
∵
∴
∴
∴與為“等垂線段”;
(3)與的積的最大值為49;
由(1)(2)知,
∴最大時,與的積最大
∴點(diǎn)在的延長線上,如圖所示:
∴
∴
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l2表示兩人離A地的距離s(km)與時間t(h)的關(guān)系,請結(jié)合圖象解答下列問題:
(1)表示乙離A地的距離與時間關(guān)系的圖象是 (填l1或l2);甲的速度是 km/h,乙的速度是 km/h;
(2)求出l1,l2的解析式,并標(biāo)注自變量的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75°方向上,兩小時后,輪船在B處測得小島C在北偏東60°方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)合作完成一項(xiàng)工程,需要12天完成,工程費(fèi)用共36000元,若甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程,乙工程隊(duì)所用的時間是甲工程隊(duì)的1.5倍,乙工程隊(duì)每天的費(fèi)用比甲工程隊(duì)少800元.
(1)問甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若讓一個工程隊(duì)單獨(dú)完成這項(xiàng)工程,哪個工程隊(duì)的費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標(biāo)有數(shù)字1,3,5;第二組卡片正面分別標(biāo)有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當(dāng)摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當(dāng)摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認(rèn)為這個游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了主題為“梅山文化知多少”的專題調(diào)查活動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,整理調(diào)查數(shù)據(jù)制成了不完整的表格和扇形統(tǒng)計圖(如圖).
等級 | 非常了解 | 比較了解 | 基本了解 | 不太了解 |
頻數(shù) | 50 | m | 40 | 20 |
根據(jù)以上提供的信息解答下列問題:
(1)本次問卷調(diào)查共抽取的學(xué)生數(shù)為多少人,表中m的值為多少;
(2)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖中對應(yīng)扇形的圓心角的度數(shù),并補(bǔ)全扇形統(tǒng)計圖;
(3)若該校有學(xué)生2000人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中“不太了解”梅山文化知識的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王勇和李明兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實(shí)驗(yàn),他們共做了30次實(shí)驗(yàn),實(shí)驗(yàn)的結(jié)果如下:
朝上的點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分別計算這30次實(shí)驗(yàn)中“3點(diǎn)朝上”的頻率和“5點(diǎn)朝上”的頻率;
(2)王勇說:“根據(jù)以上實(shí)驗(yàn)可以得出結(jié)論:由于5點(diǎn)朝上的頻率最大,所以一次實(shí)驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大”;李明說:“如果投擲300次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是30次”.試分別說明王勇和李明的說法正確嗎?并簡述理由;
(3)現(xiàn)王勇和李明各投擲一枚骰子,請用列表或畫樹狀圖的方法求出兩枚骰子朝上的點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點(diǎn)E,過點(diǎn)E作ED∥BC交AB于點(diǎn)D.
(1)求證:AEBC=BDAC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個圖形中一個有2個正方形,第②個圖形中一共有8個正方形,第③個圖形中一共有16個正方形,…,按此規(guī)律,第⑦個圖形中正方形的個數(shù)為( 。
A. 56 B. 65 C. 68 D. 71
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com