我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱(chēng)為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是( )
A.6 B.8 C.10 D.12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知k、b是一元二次方程(2x+1)(3x﹣1)=0的兩個(gè)根,且k>b,則函數(shù)y=kx+b的圖象不經(jīng)過(guò)( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=﹣x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過(guò)點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是 .
[
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
麗君花卉基地出售兩種盆栽花卉:太陽(yáng)花6元/盆,繡球花10元/盆.若一次購(gòu)買(mǎi)的繡球花超過(guò)20盆時(shí),超過(guò)20盆部分的繡球花價(jià)格打8折.
(1)分別寫(xiě)出兩種花卉的付款金額y(元)關(guān)于購(gòu)買(mǎi)量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購(gòu)買(mǎi)這兩種花卉共90盆,其中太陽(yáng)花數(shù)量不超過(guò)繡球花數(shù)量的一半.兩種花卉各買(mǎi)多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,下列條件中,不能證明△ABC≌△DCB的是( )
A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCB
C. BO=CO,∠A=∠D D. AB=DC,∠A=∠D
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com