【題目】圖1、圖2分別是的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,A、B兩點在小正方形的頂點上,請在圖1、圖2中各取兩點C、D(點C、D必須在小正方形的頂點上).使以A、B、C、D為頂點的四邊形分別滿足以下要求:
(1)在圖1中畫一個菱形ABCD,連接AC,且使;
(2)在圖2中畫一個以AB為對角線的四邊形AEBF,且此四邊形為軸對稱圖形,,并直接寫出所畫四邊形的面積;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是坐標原點,菱形OABC的頂點A的坐標為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關系式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,半徑為1的與軸正半軸和軸正半軸分別交于兩點,直線:與軸和軸分別交于兩點.
(l)當直線與相切時,求出點的坐標和點的坐標;
(2)如圖2,當點在線段上時,直線與交于兩點(點在點的上方),過點作軸,與交于另一點,連結交軸于點.
①如圖3,若點與點重合時,求的長并寫出解答過程;
②如圖2,若點與點不重合時,的長是否發(fā)生變化,若不發(fā)生變化,請求出的長并寫出解答過程;若發(fā)生變化,請說明理由.
(3)如圖4,在(2)的基礎上,連結,將線段繞點逆時針旋轉到,若點在的延長線時,請用等式直接表示線段,之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實行垃圾資源化利用,是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設備可利用最新技術將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設備,若干已知購買甲型智能設備花費360萬元,購買乙型智能設備花費480萬元,購買的兩種設備數(shù)量相同,且兩種智能設備的單價和為140萬元.
(1)求甲乙兩種智能設備單價;
(2)垃圾處理廠利用智能設備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價為每噸200元,平均每天可售出350噸,而當銷售價每降低1元,平均每天可多售出5噸,但售價在每噸200元基礎上降價幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達到36080元,求每噸燃料棒售價應為多少元?
②每噸燃料棒售價應為多少元時,這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,點為坐標原點,.直線與軸交于點A,交軸于點B.過C點作直線AB的垂線,垂足為E,交軸于點D.
(1)求直線CD的解析式;
(2)點G為軸負半軸上一點,連接EG,過點E作交軸于點H.設點G的坐標為,線段AH的長為.求與之間的函數(shù)關系式(不要求寫出自變量的取值范圍)
(3)過點C作軸的垂線,過點G作軸的垂線,兩線交于點M,過點H作于點N,交直線CD于點,連接MK,若MK平分,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將直線y=﹣3x向上平移3個單位,與y軸、x軸分別交于點A、B,以線段AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC.若反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,求此反比例函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一塊含30°(即∠CAB=30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN恰好重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0°),現(xiàn)有射線CP繞點C從CA的位置開始按順時針方向以每秒2度的速度旋轉到CB位置,在旋轉過程中,射線CP與量角器的半圓弧交于E.
(1)當旋轉7.5秒時,連接BE,試說明:BE=CE;
(2)填空:①當射線CP經(jīng)過△ABC的外心時,點E處的讀數(shù)是 .
②當射線CP經(jīng)過△ABC的內(nèi)心時,點E處的讀數(shù)是 ;
③設旋轉x秒后,E點出的讀數(shù)為y度,則y與x的函數(shù)式是y= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(發(fā)現(xiàn))
如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①).
如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經(jīng)過A,B,C三點的圓上嗎?請證明點D也不在⊙O內(nèi).
(應用)
利用(發(fā)現(xiàn))和(思考)中的結論解決問題:
(1)如圖④,已知∠BCD=∠BAD,∠CAD=40°,求∠CBD的度數(shù).
(2)如圖⑤,若四邊形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延長線于F,點E在AB上,∠AED=∠ADF,CD=3,EC=2,求ED的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com