如圖,等邊三角形ABC的三個頂點都在圓上.這個圖形是中心對稱圖形嗎?如果是,指出它的對稱中心,并畫出該圖關(guān)于點A對稱的圖形;如果不是,請在圓內(nèi)補上一個三角形,使整個圖形成為中心對稱圖形(保留畫圖痕跡),并指出所補三角形可以看作由△ABC怎樣變換而成的.
考點:利用旋轉(zhuǎn)設(shè)計圖案
專題:
分析:利用中心對稱圖形的性質(zhì)得出等邊三角形ABC的三個頂點都在圓上的圖形不是中心對稱圖形,進而由△ABC繞點O旋轉(zhuǎn)60°而成的一個新的圖形得出答案.
解答:解:不是中心對稱圖形;
所補三角形如圖所示;
所補的三角形可以看作是由△ABC繞點O旋轉(zhuǎn)60°而成的.
點評:此題主要考查了中心對稱圖形的性質(zhì)以及利用旋轉(zhuǎn)設(shè)計圖案,正確把握中心對稱圖形的性質(zhì)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

長度為3cm、6cm、8cm、9cm的四條線段,若以其中的三條線段為邊構(gòu)成三角形,可以構(gòu)成不同的三角形共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,某商場有一雙向運行的自動扶梯,扶梯上行和下行的速度保持不變且相同,甲、乙兩人同時站上了此扶梯的上行和下行端,甲站上上行扶梯的同時又以0.8m/s的速度往上跑,乙站上下行扶梯后則站立不動隨扶梯下行,兩人在途中相遇,甲到達(dá)扶梯頂端后立即乘坐下行扶梯,同時以0.8m/s的速度往下跑,而乙到達(dá)底端后則在原地等候甲.圖2中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過程中,離扶梯底端的路程y(m)與所用時間x(s)之間的部分函數(shù)關(guān)系,結(jié)合圖象解答下列問題:

(1)求點B的坐標(biāo);
(2)求AB所在直線的函數(shù)表達(dá)式;
(3)乙到達(dá)扶梯底端后,還需等待多長時間,甲才到達(dá)扶梯底端?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩校參加市教育局舉辦的初中生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
分?jǐn)?shù) 7分 8分 9分 10分
人數(shù) 11 0
 
 
8
(1)請將甲校成績統(tǒng)計表和圖2的統(tǒng)計圖補充完整;
(2)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學(xué)校成績較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組
2x-1<3
2x+5≤3(x+2)
,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:
a-1
a2-3a+2
÷
a+1
a2-2a
-
a-1
a+1
,其中a=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過原點的拋物線y=-x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B,記點B關(guān)于拋物線對稱軸的對稱點為C(點B,點C不重合).連接CB,CP.
(1)當(dāng)m=
5
2
時,求點A的坐標(biāo)及BC的長;
(2)當(dāng)m>1時,連接CA,當(dāng)CA⊥CP時,求m的值;
(3)過點P作PE⊥PC且PE=PC,問是否存在m,使得點E恰好落在坐標(biāo)軸上?若存在,請直接寫出所有滿足條件的點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示(圖1為實景側(cè)視圖,圖2為安裝示意圖),在屋頂?shù)男逼旅嫔习惭b太陽能熱水器:先安裝支架AB和CD(均與水平面垂直),再將集熱板安裝在AD上.為使集熱板吸熱率更高,公司規(guī)定:AD與水平線夾角為θ1,且在水平線上的射影AF為140cm.現(xiàn)已測量出屋頂斜面與水平面夾角為θ2,并已知tanθ1≈1.1,tanθ2≈0.4.如果安裝工人已確定支架AB高為25cm,求支架CD的高(結(jié)果精確到1cm)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(a-2b)2-3a(a-b)+(a+2b)(a-2b),其中a=-
3
,b=
3
+1.

查看答案和解析>>

同步練習(xí)冊答案