【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角是 ;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=x°時,請直接寫出∠DOE的度數(shù).
【答案】(1)∠BOE、∠COE;(2)90°;(3)90°.
【解析】
試題分析:(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出結(jié)論;
(2)先求出∠COD、∠COE,即可得出∠DOE=90°;
(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.
解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴與∠AOE互補的角是∠BOE、∠COE;
故答案為∠BOE、∠COE;
(2)∵OD、OE分別平分∠AOC、∠BOC,
∴∠COD=∠AOD=36°,∠COE=∠BOE=∠BOC,
∴∠AOC=2×36°=72°,
∴∠BOC=180°﹣72°=108°,
∴∠COE=∠BOC=54°,
∴∠DOE=∠COD+∠COE=90°;
(3)當(dāng)∠AOD=x°時,∠DOE=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個整數(shù)能表示成a2+b2(a、b是正整數(shù))的形式,則稱這個數(shù)為“豐利數(shù)”.例如,2是“豐利數(shù)”,因為2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整數(shù)),所以M也是“豐利數(shù)”.
(1)請你寫一個最小的三位“豐利數(shù)”是 ,并判斷20 “豐利數(shù)”.(填是或不是);
(2)已知S=x2+y2+2x﹣6y+k(x、y是整數(shù),k是常數(shù)),要使S為“豐利數(shù)”,試求出符合條件的一個k值(10≤k<200),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,以AD為邊作正方形ADEF,連結(jié)CF,CE.
(1)求證:△ABD≌△ACF;
(2)如果BD=AC,求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE∥BD,過點D作ED∥AC,兩線相交于點E.
(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點F.若BE⊥ED于點E,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究
小聰將命題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍Α?/span>B分為“直角、鈍角、銳角”三種情況進行探究.
第一種情況:當(dāng)∠B 是直角時,如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時,如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時,如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點C作AB邊的垂線交AB延長線于點M;同理過點F作DE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請補全圖形,進而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在AD邊上,點F在AD的延長線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件:①∠A=∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°+∠B;④∠A=∠B=∠C,能確定△ABC是直角三角形的條件有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com