如圖:已知在等邊三角形ABC中,點(diǎn)D、E分別是AB、BC延長(zhǎng)線上的點(diǎn),且BD=CE,直線CD與AE相交于點(diǎn)F.
(1)求證:DC=AE;
(2)求證:AD2=DC•DF.
【考點(diǎn)】相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).
【分析】(1)利用“SAS”證明△DBC≌△ECA即可;
(2)由△DBC≌△ECA可知∠E=∠D,根據(jù)外角定理可知∠AFC=∠E+∠FCE=∠D+∠BCD=∠ABC=60°,可證△DCA∽△DAF,利用相似比得出結(jié)論.
【解答】證明:(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠BAC=60°,BC=CA
∴∠DBC=∠ECA=180°﹣60°=120°
在△DBC與△ECA中
∴△DBC≌△ECA(SAS)
∴DC=AE;
(2)∵△DBC≌△ECA,
∴∠DCB=∠EAC
又∠ACB=∠BAC
∴∠DCA=∠DAF
又∠D=∠D
∴△DCA∽△DAF
∴
∴AD2=DC•DF.
【點(diǎn)評(píng)】本題考查了全等三角形、相似三角形的判定與性質(zhì).關(guān)鍵是根據(jù)等邊三角形的性質(zhì)找角相等的條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,點(diǎn)D、E分別在邊AB、AC上,DE∥BC,AD=1,AB=3,則S△ADE:S△ABC=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,如果△APB繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)30°后得到△A′P′B,且BP=2,那么PP′的長(zhǎng)為__________.(不取近似值.以下數(shù)據(jù)供解題使用:sin15°=,cos15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(3,1),則點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為
A. (3,-1) B. (-3,1) C. (-1,-3) D. (-3,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小陽在如圖①所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒.有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時(shí)間為t(單位:秒),他與攝像機(jī)的距離為y(單位:米),表示y與t的函數(shù)關(guān)系的圖象大致如圖②,則這個(gè)固定位置可能是圖①中的
A. 點(diǎn)Q B. 點(diǎn)P C. 點(diǎn)M D. 點(diǎn)N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段的最小覆蓋圓就是以線段為直徑的圓.
(1)請(qǐng)分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);
圖①
(2)三角形的最小覆蓋圓有何規(guī)律?請(qǐng)直接寫出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū)(其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號(hào)基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號(hào),且使基站所需發(fā)射功率最。ň嚯x越小,所需功率越。,此基站應(yīng)建在何處?請(qǐng)寫出你的結(jié)論并說明研究思路.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com