【題目】如圖,在中,邊上一點,連接,以為鄰邊作相交于點,且滿足

1)求證:四邊形為矩形;

2)若,連接,求的長.

【答案】1)見解析;(2

【解析】

(1)利用等腰三角形的性質(zhì)可知∠CAB=CBA,再由三角形內(nèi)角和定理即可證出∠OAE=OEA,證得OA=OE,AB=DE,利用對角線相等的平行四邊形是矩形進行判定;

(2)中,利用勾股定理求得CDOB的長,利用等腰三角形三線合一的性質(zhì)證得∠COB=90,再根據(jù)勾股定理即可求得CO的長.

(1)∵四邊形ADBE為平行四邊形,

AEBD,AB=2OA,DE=2OE

∴∠ABC=OAE,

∵∠C=AOE

∴∠CAB=OEA,

AB=BC

∴∠CAB=CBA,

∴∠OAE=OEA,
OA=OE,

AB=DE

∴平行四邊形ADBE是矩形;

(2)∵四邊形ADBE是矩形,

∴∠ADB=ADC=90BD=AE=2,

中,AD=4,

設(shè)CD=,則AC=BC=CD+BD=,

,即,

解得:,即CD=,

中,AD=4BD=AE=2,

,

OB=AB=,

AC=BC,OA=OB,

COAB

∴∠COB=90,

中,BC= CD+BD=3+2=5,BO=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明到某服裝專賣店去做社會調(diào)查,了解到該專賣店為了激勵營業(yè)員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法計算薪資,并獲得如下信息:

營業(yè)員

小張

小王

月銷售件數(shù)

200

150

月總收入/元

1400

1250

假設(shè)月銷售件數(shù)為x,月總收入為y元,銷售每件獎勵a元,營業(yè)員月基本工資為b元.

(1)求a、b的值.

(2)若營業(yè)員小張上個月總收入是1700元,則小張上個月賣了多少件服裝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一個計算程序;

1)若輸入的x3,則輸出的結(jié)果為   ;

2)若開始輸入的x為正整數(shù),最后輸出的結(jié)果為40,則滿足條件的x的不同值最多有   ;

3)規(guī)定:程序運行到“判斷結(jié)果是否大于30”為一次運算.若運算進行了三次才輸出,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點O,點E,F分別為OB,OD的中點延長AEG,使EG=AE,連接CG

1)求證:ABECDF

2)當AB=AC時,判斷四邊形EGCF是什么形狀?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式;

(2)在同一坐標系中若三種消費方式對應(yīng)的函數(shù)圖象如圖所示請求出點A、B、C的坐標;

(3)請根據(jù)函數(shù)圖象直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

已知矩形的面積為aa為常數(shù),a0),當該矩形的長為多少時,它的周長最?最小值是多少?

【數(shù)學(xué)模型】

設(shè)該矩形的長為x周長為y,yx的函數(shù)表達式為y=2x+ )(x0).

【探索研究】

小彬借鑒以前研究函數(shù)的經(jīng)驗先探索函數(shù)y=x+的圖象性質(zhì)

1)結(jié)合問題情境,函數(shù)y=x+ 的自變量x的取值范圍是x0下表是yx的幾組對應(yīng)值

寫出m的值;

畫出該函數(shù)圖象,結(jié)合圖象,得出當x=________y有最小值,y最小=________;

提示在求二次函數(shù)y=ax2+bx+ca≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+ x0)的最小值,解決問題(2).

2)【解決問題】

直接寫出問題情境中問題的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從點O正上方2米的點A處發(fā)出把球看成點,其運行的高度y(米)與運行的水平距離x(米)滿足關(guān)系式y=ax﹣62+h,已知球網(wǎng)與點O的水平距離為9米,高度為2.43米,球場的邊界距點O的水平距離為18米.

1)當h=2.6時,求yx的函數(shù)關(guān)系式.

2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點 A﹣2,0),B2,0),C0,2,點 D,點E分別是 AC,BC的中點,將CDE繞點C逆時針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當 AD′∥CE時,求α的大;

2如圖,若 90°α180°,當點 D落在線段 BE上時,求 sin∠CBE的值;

3若直線AD與直線BE相交于點P,求點P的橫坐標m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15AC=13,高AD=12,則的周長為_______________

查看答案和解析>>

同步練習冊答案