【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
【答案】(1)證明見解析;(2)8.
【解析】試題分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是 O的切線;(2)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8.
試題解析:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,OC⊥CP.
∵OC是O的半徑,
∴PC是O的切線。
(2)連接MA,MB,
∵點(diǎn)M是的中點(diǎn),
∴ =.
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴.
∴BM2=MNMC.
又∵AB是O的直徑,AM=BM,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=.
∴MNMC=BM2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】辦公中常用到的紙張一般是A4紙,其厚度約為0.0075m,用科學(xué)記數(shù)法表示為( 。
A. 7.5×10﹣3m B. 7.5×10﹣2m C. 7.5×103m D. 75×10﹣3m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=,AB=8,AD=3,BC=4,點(diǎn)P為AB邊上一動(dòng)點(diǎn),若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)是( 。
A. 1個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程﹣3(﹣9)=5x﹣1,處被墨水蓋住了,已知方程的解x=2,那么處的數(shù)字是( 。
A. 2B. 3C. 4D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·大慶中考)如圖,P1、P2是反比例函數(shù)y= (k>0)在第一象限圖象上的兩點(diǎn),點(diǎn)A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點(diǎn)P1、P2為直角頂點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)①求P2的坐標(biāo);②根據(jù)圖象直接寫出在第一象限內(nèi)當(dāng)x滿足什么條件時(shí),經(jīng)過點(diǎn)P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y=的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=8,BC=6,點(diǎn)D為BC上一點(diǎn),BD=2.過點(diǎn)D作射線DE交AC于點(diǎn)E,使∠ADE=∠B.求線段
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)全等三角形時(shí),數(shù)學(xué)興趣小組設(shè)計(jì)并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計(jì)如下表:
得分(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 7 | 12 | 10 | 8 | 3 |
則得分的眾數(shù)和中位數(shù)分別為( )
A.70分,70分
B.80分,80分
C.70分,80分
D.80分,70分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,點(diǎn)E在邊CD上,點(diǎn)F在線段BE的延長(zhǎng)線上,連接FC,且∠FCE=∠CBE.
(1)如圖①,當(dāng)點(diǎn)E為CD邊的中點(diǎn)時(shí),求證:CF=2EF;
(2)如圖②,當(dāng)點(diǎn)F位于線段AD的延長(zhǎng)線上時(shí),求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com