【題目】如圖,ABC 是等邊三角形,P BC 上任意一點(diǎn),PDABPEAC,連接 DE.記ADE 的周長(zhǎng)為,四邊形 BDEC 的周長(zhǎng)為,則的大小關(guān)系是( )

A. B. C. D. 無法確定

【答案】A

【解析】

等邊三角形各內(nèi)角為60°,故∠B=C=60°,即可求得BP=2BDCP=2CE,∴BD+CE=BC,即可求得L1=L2,故選A.

解:∵等邊三角形各內(nèi)角為60°,∴∠B=C=60°
∵∠BPD=CPE=30°,
∴在RtBDPRtCEP中,
BP=2BD,CP=2CE
BD+CE=BC,
AD+AE=AB+AC-BC=BC,
BD+CE+BC=BC,
L1=BC+DE
L2=BC+DE,
即得L1=L2,
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: 把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:照射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.

如圖,一束光線MA照射到平面鏡CE上,被CE反射到平面鏡CF上,又被CF反射.已知被CF反射出的光線BN與光線MA平行.若∠1=35°,則∠2= ,∠3= ;若∠1=50°,∠3=

2)由(1)猜想:當(dāng)兩平面鏡CE,CF的夾角∠3為多少度時(shí),可以使任何射到平面鏡CE上的光線MA,經(jīng)過平面鏡CE,CF的兩次反射后,入射光線MA與反射光線BN平行,請(qǐng)你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八屆五中全會(huì)出臺(tái)了全面實(shí)施一對(duì)夫婦可生育兩個(gè)孩子的政策,這是黨中央站在中華民族長(zhǎng)遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進(jìn)人口長(zhǎng)期均衡發(fā)展的重大舉措.二孩政策出臺(tái)后,某家庭積極響應(yīng)政府號(hào)召,準(zhǔn)備生育兩個(gè)孩子(生男生女機(jī)會(huì)均等,且與順序有關(guān)).
(1)該家庭生育兩胎,假設(shè)每胎都生育一個(gè)小孩,求這兩個(gè)小孩恰好是1男1女的概率;
(2)該家庭生育兩胎,假如第一胎生育一個(gè)小孩,其第二胎生育一對(duì)雙胞胎,請(qǐng)你用畫樹狀圖或列表的方法,求這三個(gè)小孩中至少有一個(gè)女孩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABCABAC,在AC上有一點(diǎn)D,連接BD,并延長(zhǎng)至點(diǎn)E,使AEAB

1)畫圖:作∠EAC的平分線AF,AFDE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)在(1)的條件下,連接CF,求證:∠ABE=∠ACF;

3)若AC8,∠E15°,求三角形ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心都在原點(diǎn),且各邊也都與x軸或y軸平行,從內(nèi)向外,它們的邊長(zhǎng)依次為2,46,8,…頂點(diǎn)依次用A1A2、A3A4表示,則頂點(diǎn)A2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工地因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3,現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:

租金(單位:元/臺(tái)時(shí))

挖掘土石方量(單位:m3/臺(tái)時(shí))

甲型機(jī)

100

60

乙型機(jī)

120

80

(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型的挖掘機(jī)各需多少臺(tái)?

(2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有幾種不同的租用方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面 與通道 平行),通道水平寬度 為8米, ,通道斜面 的長(zhǎng)為6米,通道斜面 的坡度 .

(1)求通道斜面 的長(zhǎng)為米;
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面 的坡度變緩,修改后的通道斜面 的坡角為30°,求此時(shí) 的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正確的結(jié)論有( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案