【題目】如圖,若B、D、FAN上,C、EAM上,且AB=BC=CD=ED=EF,∠A=20°,則∠FEB= __________

【答案】70°

【解析】

先根據(jù)AB=BC=CD得到∠BCA=A,∠CDB=CBD,再通過三角形的外角性質(zhì)得到△ECD是等邊三角形,從而得到BC=CE,求出∠CEB的度數(shù);由ED=EF得到∠EDF=EFD,再通過三角形的內(nèi)角和公式和外角性質(zhì)得到∠FEA的度數(shù),∠FEA-∠CEB的值即為∠FEB的度數(shù).

解:∵AB=BC,

BCA=A=20°,

∴∠CBD=BCA+A=20°+20°=40°

BC=CD

∴∠CDB=CBD=40°,

ECD=180°-∠BCA -∠BCD

=180°-20°-(180°-∠CBD-∠CDB

=160°-(180°-40°-40°

=60°

又∵CD=ED,∠ECD=60°,

∴△ECD是等邊三角形,

BC=CE,∠CDE=60°,

∴∠CEB=BCA =×20°=10°,∠ADE=CDE+CDB=60°+40°=100°

ED=EF

∴∠EDF=EFD=180°-∠CEB=180°-100°=80°,

∴∠FEA=180°-∠A-∠EFD=180°-20°-80°=80°,

∴∠FEB=FEA-∠CEB=80°-10°=70°

故答案為:70°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB90°,∠OAB30°,反比例函數(shù)y1的圖象經(jīng)過點(diǎn)A,反比例函數(shù)y2的圖象經(jīng)過點(diǎn)B,則下列關(guān)于m,n的關(guān)系正確的是(  )

A.mnB.m=﹣nC.m=﹣nD.m=﹣3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心    點(diǎn),按順時(shí)針方向旋轉(zhuǎn)    度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P,Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線為常數(shù))交軸于兩點(diǎn).

1)求拋物線的解析式;

2)直接寫出:①拋物線的頂點(diǎn)坐標(biāo);

②拋物線與軸交點(diǎn)關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)的坐標(biāo);

3)在直線下方的拋物線上是否存在點(diǎn)使的面積最大?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠BAC=60°,點(diǎn)DAB上,點(diǎn)E,FBC上,∠ADE=60°,∠BAF=2BED.

1)如圖1,求證:AF=AC;

2)如圖2,當(dāng)EBC的中點(diǎn)時(shí),求證:AD-BD=AF;

3)如圖3,在(2)的條件下,在AB上取點(diǎn)G,使∠ACG=BED,連接CGAF于點(diǎn)M,若BD=3,FM=8,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,點(diǎn)DAB上的一點(diǎn),連接CD,CEAB,BECD,且CE=AD.

(1)求證:四邊形BDCE是菱形;

(2)過點(diǎn)EEFBD,垂足為點(diǎn)F,若點(diǎn)FBD的中點(diǎn),EB=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+5x軸交于A(﹣1,0),B5,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)點(diǎn)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C,B不重合),過點(diǎn)DDFx軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BD,直線BC能否把△BDF分成面積之比為23的兩部分?若能,請(qǐng)求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.

3)若M為拋物線對(duì)稱軸上一動(dòng)點(diǎn),使得△MBC為直角三角形,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過A商品獲利潤(rùn)y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過A商品所獲的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案