【題目】已知銳角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.
(1)求證:△BDF≌△ADC;
(2)若BD=4,DC=3,求線段BE的長度.
【答案】(1)見解析;(2)BE=.
【解析】
(1)由題意可得AD=BD,由余角的性質(zhì)可得∠CBE=∠DAC,由“ASA”可證△BDF≌△ADC;(2)由全等三角形的性質(zhì)可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長度.
解:(1)∵AD⊥BC,∠ABC=45°
∴∠ABC=∠BAD=45°,
∴AD=BD,
∵DA⊥BC,BE⊥AC
∴∠C+∠DAC=90°,∠C+∠CBE=90°
∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°
∴△BDF≌△ADC(ASA)
(2)∵△BDF≌△ADC
∴AD=BD=4,CD=DF=3,BF=AC
∴BF= =5
∴AC=5,
∵S△ABC=×BC×AD=×AC×BE
∴7×4=5×BE
∴BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角中,,,的面積為33,點(diǎn)是射線上一動(dòng)點(diǎn),以為直徑作圓交線段于點(diǎn),交射線于點(diǎn),交射線于點(diǎn).
(1)當(dāng)點(diǎn)在線段上時(shí),若點(diǎn)為中點(diǎn),求的長.
(2)連結(jié),若為等腰三角形,求所有滿足條件的值.
(3)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在上時(shí),記的面積為,的面積,則的值為__________(直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對(duì)參賽作品按A、B、C、D四個(gè)等級(jí)進(jìn)行了評(píng)定.現(xiàn)隨機(jī)取部分學(xué)生書法作品的評(píng)定結(jié)果進(jìn)行分析,并繪制扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請(qǐng)?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校這次活動(dòng)共收到參賽作品750份,請(qǐng)你估計(jì)參賽作品達(dá)到B級(jí)以上(即A級(jí)和B級(jí))有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BCA=90°,點(diǎn)O在△ABC的斜邊AB上,以OB為半徑的⊙O經(jīng)過點(diǎn)B,與AC相切于點(diǎn)D,連結(jié)BD.
(1)求證;BD平分∠ABC;
(2)若∠ABC=60°,OB=2,計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)論開放某教研機(jī)構(gòu)為了了解在校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行調(diào)查.依據(jù)所有調(diào)查數(shù)據(jù)繪制成以下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問題:
類別 | 人數(shù) | 占總?cè)藬?shù)的比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補(bǔ)全統(tǒng)計(jì)圖.
(2)①根據(jù)上面的統(tǒng)計(jì)結(jié)果,談?wù)勀銓?duì)該校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.
(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.
①當(dāng)∠MBA=∠BDE時(shí),求點(diǎn)M的坐標(biāo);
②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2+bx+c經(jīng)過(1,3),(4,0)
(1)求該拋物線的解析式;(2)求當(dāng)函數(shù)值y>0時(shí)自變量x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代算書《九章算術(shù)》中第九章第六題是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深葭長各幾何?你讀懂題意了嗎?請(qǐng)回答水深______尺,葭長_____尺.解:根據(jù)題意,設(shè)水深OB=x尺,則葭長OA'=(x+1)尺.可列方程正確的是( )
A. x2+52 =(x+1)2B. x2+52 =(x﹣1)2
C. x2+(x+1)2 =102D. x2+(x﹣1)2=52
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為( )
A. (3,4)或(2,4) B. (2,4)或(8,4)
C. (3,4)或(8,4) D. (3,4)或(2,4)或(8,4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com