【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作AB的垂線交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:;
(2)過點(diǎn)C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的長(zhǎng).
【答案】(1)見解析;(2)CF=,FG=,
【解析】
(1)連接AE,利用等腰三角形的三線合一的性質(zhì)證明∠EAB=∠EAC即可解決問題.
(2)證明△BCG∽△ABE,可得,由此求出CG,再利用平行線分線段成比例定理求出CF,利用勾股定理即可求出FG.
(1)證明:連接AE.
∵AB是直徑,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴∠EAB=∠EAC,
∴.
(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC
∴∠CGB=∠AEB=∠ABF=90°,
∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,
∴∠CBG=∠BAE,
∴△BCG∽△ABE,
∴,
∴,
∴CG=2,
∵CG∥AB,
∴,
∴,
∴CF=,
∴FG===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠A>∠B,分別以點(diǎn)A,C為圓心,大于AC長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,點(diǎn)Q,作直線PQ交AB于點(diǎn)D,再分別以點(diǎn)B,D為圓心,大于BD長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)M,點(diǎn)N,作直線MN交BC于點(diǎn)E,若△CDE是等邊三角形,則∠A=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2-4ax+4(a≠0)與y軸交于點(diǎn)A.過點(diǎn)B(0,3)作y軸的垂線l,若拋物線y=ax2-4ax+4(a≠0)與直線l有兩個(gè)交點(diǎn),設(shè)其中靠近y軸的交點(diǎn)的橫坐標(biāo)為m,且│m│<1,則a的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過抽取撲克牌的游戲來決定誰去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲同學(xué)的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:⊙O上有三個(gè)點(diǎn)A,B,C,∠BAC=70°,請(qǐng)畫出要求的角,并標(biāo)注.
(1)畫一個(gè)140°的圓心角;(2)畫一個(gè)110°的圓周角;(3)畫一個(gè)20°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(2,﹣4),B(m, 2)兩點(diǎn).當(dāng)x滿足條件______________時(shí),一次函數(shù)的值大于反比例函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請(qǐng)你只用無刻度的直尺在網(wǎng)格中找到一點(diǎn) D,使四邊形ABCD是以AC為“相似對(duì)角線”的四邊形(畫出1個(gè)即可);
(2)如圖2,在四邊形ABCD中,,對(duì)角線BD平分∠ABC.
求證: BD是四邊形ABCD的“相似對(duì)角線”;
運(yùn)用:
(3)如圖3,已知FH是四邊形EFGH的“相似對(duì)角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AC=6,BD=8.點(diǎn)E是AB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BC、CD、AD上.設(shè) AE=m.
(1)如圖①,當(dāng)m=1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com