【題目】如圖,有兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤A、B,轉(zhuǎn)盤A被均勻分成4等份,每份標(biāo)上數(shù)字1、2、3、4四個(gè)數(shù)字;轉(zhuǎn)盤B被均勻分成6等份,每份標(biāo)上數(shù)字1、2、3、4、5、6六個(gè)數(shù)字.有人為甲乙兩人設(shè)計(jì)了一個(gè)游戲,其規(guī)則如下:

同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤AB,轉(zhuǎn)盤停止后,指針各指向一個(gè)數(shù)字(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字為止),用所指的兩個(gè)數(shù)字作乘積,如果所得的積是偶數(shù),那么甲得1分;如果所得的積是奇數(shù),那么乙得1分.你認(rèn)為這樣的規(guī)則是否公平?請(qǐng)你說(shuō)明理由;如果不公平,請(qǐng)你修改規(guī)則使該游戲?qū)﹄p方公平.

【答案】不公平修改游戲規(guī)則見解析.

【解析】試題解析:解:列表如下,


1

2

3

4

5

6

1







2







3







4







從表中可以看出所得的積共有4×624種情況,

乘積是奇數(shù)的結(jié)果共有2×36種情況,

所以甲獲勝的概率是,乙獲勝的概率是.

所以這個(gè)游戲規(guī)則不公平.

游戲規(guī)則可以改為:當(dāng)兩數(shù)的和是奇數(shù)時(shí)甲獲勝,當(dāng)兩數(shù)和是偶數(shù)時(shí)乙獲勝.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1x1,y1,P2x2,y2,可通過(guò)構(gòu)造直角三角形利用圖1得到結(jié)論:,他還利用圖2證明了線段P1P2的中點(diǎn)Px,y的坐標(biāo)公式:

1)已知點(diǎn)M2,1,N2,5,則線段MN長(zhǎng)度為 ;

2)請(qǐng)求出以點(diǎn)A2,2,B2,0,C3,1,D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo);

3)如圖3OL滿足y2xx0,點(diǎn)P2,1OLx軸正半軸所夾的內(nèi)部一點(diǎn),請(qǐng)?jiān)?/span>OL、x軸上分別找出點(diǎn)EF,使PEF的周長(zhǎng)最小,求出周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問題情境:在數(shù)學(xué)活動(dòng)課上,我們給出如下定義:順次連按任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖(1),在四邊形ABCD中,點(diǎn)E,F,G,H分別為邊AB,BC,CDDA的中點(diǎn).試說(shuō)明中點(diǎn)四邊形EFGH是平行四邊形.

探究展示:勤奮小組的解題思路:

反思交流:

1上述解題思路中的依據(jù)1”、依據(jù)2”分別是什么?

依據(jù)1   ;依據(jù)2   ;

連接AC,若ACBD時(shí),則中點(diǎn)四邊形EFGH的形狀為   ;

創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)探究:

2)如圖(2),點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PAPBPCPD,APBCPD,點(diǎn)E,FG,H分別為邊ABBC,CDDA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并說(shuō)明理由;

3)若改變(2)中的條件,使APBCPD90°,其它條件不變,則中點(diǎn)四邊形EFGH的形狀為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).

(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;

(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長(zhǎng),同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說(shuō)法正確的是( 。

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是隨機(jī)抽取的某公司部分員工的月收入資料.

(1)請(qǐng)計(jì)算樣本的平均數(shù)和中位數(shù);

(2)甲乙兩人分別用樣本平均數(shù)和中位數(shù)來(lái)估計(jì)推斷公司全體員工月收入水平,請(qǐng)你寫出甲乙兩人的推斷結(jié)論;并指出誰(shuí)的推斷比較科學(xué)合理,能直實(shí)地反映公司全體員工月收入水平。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分線AM交BC于點(diǎn)D,在所作圖形中,將Rt△ABC沿某條直線折疊,使點(diǎn)A與點(diǎn)D重合,折痕EF交AC于點(diǎn)E,交AB于點(diǎn)F,連接DE、DF,再展回到原圖形,得到四邊形AEDF.

(1)試判斷四邊形AEDF的形狀,并證明;

(2)若AB=10,BC=8,在折痕EF上有一動(dòng)點(diǎn)P,求PC+PD的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩個(gè)點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:點(diǎn)A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a、b,則AB兩點(diǎn)間的距離表示為AB|ab|.根據(jù)以上知識(shí)解題:

1)點(diǎn)A在數(shù)軸上表示3,點(diǎn)B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點(diǎn)與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,那么|a+4|+|a2|______

4)對(duì)于任何有理數(shù)x,|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的大括號(hào)里(將各數(shù)用逗號(hào)分開):

-8,0.275,0,-1.04,--3),-,|2|.

1)正數(shù)集合:{ …};

2)分?jǐn)?shù)集合:{ …};

3)負(fù)整數(shù)集合:{ …};

4)非負(fù)數(shù)集合:{ …}.

查看答案和解析>>

同步練習(xí)冊(cè)答案