【題目】已知ABCD為平行四邊形紙片,要想用它剪成一個菱形,小剛說只要過BD中點作BD的垂線交AD、BC于E、F,沿BE、DF剪去兩個角,所得的四邊形BFDE為菱形.你認為小剛的方法對嗎?為什么?
【答案】小剛的方法對;理由見解析.
【解析】試題分析:小剛的方法對;要證明四邊形BEDF是菱形,已知EF⊥BD,即要證明四邊形BEDF是平行四邊形,由平行四邊形ABCD可得DE∥BF,不難證明△DOE≌△BOF,所以DE=BF,即可證明四邊形BEDF是平行四邊形,從而證明出四邊形BEDF是菱形.
試題解析:
小剛的方法對;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠EDO=∠FBO,∠DEO=∠BFO,
∵O是BD的中點,
∴OD=OB,
∵在△DOE和△BOF中,
,
∴△DOE≌△BOF(AAS),
∴DE=BF,
∴四邊形BFDE是平行四邊形,
又∵EF⊥BD,
∴四邊形BFDE為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A. 70° B. 35° C. 40° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019 年 4 月 27 日,第二屆“一帶一路”國際合作高峰論壇圓滿閉幕.“一帶一路”已成為我國參與全球開放合作、改善全球經濟治理體系、促進全球共同發(fā)展繁榮、推動構建人類命運共同體的中國方案.其中中歐班列見證了“一帶一路”互聯(lián)互通的跨越式發(fā)展,年運送貨物總值由 2011 年的不足 6 億美元,發(fā)展到 2018 年的約 160 億美元.下面是 2011-2018 年中歐班列開行數(shù)量及年增長率的統(tǒng)計圖.
根據圖中提供的信息填空:
(1)2018 年,中歐班列開行數(shù)量的增長率是_____;
(2)如果 2019 年中歐班列的開行數(shù)量增長率不低于 50%,那么 2019 年中歐班列開行數(shù)量至少是_____列.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,D,E,F(xiàn)分別是△ABC的邊BC,CA,AB上的點,且DE∥AB,DF∥CA,要使四邊形AFDE是菱形,則要增加的條件是________.(只寫出符合要求的一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于任意一點 P 和線段 a.若過點 P 向線段 a 所在直線作垂線,若垂足落在線段 a 上,則稱點 P 為線段a 的內垂點.在平面直角坐標系 xOy 中,已知點 A(-1,0),B(2,0 ) ,C(0,2).
(1)在點 M(1,0),N(3,2),P(-1,-3)中,是線段 AB 的內垂點的是 ;
(2)已知點 D(-3,2),E(-3,4).在圖中畫出區(qū)域并用陰影表示,使區(qū)域內的每個點均為 Rt△CDE三邊的內垂點;
(3)已知直線 m 與 x 軸交于點 B,與 y 軸交于點 C,將直線 m 沿 y 軸平移 3 個單位長度得到直線 n . 若存在點 Q,使線段 BQ 的內垂點形成的區(qū)域恰好是直線 m 和 n 之間的區(qū)域(包括邊界),直接寫出點 Q 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標是(-1,2),且過點(0, ).
(1)求二次函數(shù)的解析式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求出符合條件的二次函數(shù)解析式:
(1)二次函數(shù)圖象經過點(﹣1,0),(1,2),(0,3);
(2)二次函數(shù)圖象的頂點坐標為(﹣3,6),且經過點(﹣2,10);
(3)二次函數(shù)圖象與x軸的交點坐標為(﹣1,0),(3,0),與y軸交點的縱坐標為9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】杭州休博會期間,嘉年華游樂場投資150萬元引進一項大型游樂設施.若不計維修保養(yǎng)費用,預計開放后每月可創(chuàng)收33萬元.而該游樂設施開放后,從第1個月到第x個月的維修保養(yǎng)費用累計為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費用稱為游樂場的純收益g(萬元),g也是關于x的二次函數(shù);
(1)若維修保養(yǎng)費用第1個月為2萬元,第2個月為4萬元.求y關于x的解析式;
(2)求純收益g關于x的解析式;
(3)問設施開放幾個月后,游樂場的純收益達到最大;幾個月后,能收回投資?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖象過點A(﹣2,3).
(1)求這個反比例函數(shù)的表達式;
(2)這個函數(shù)的圖象分布在哪些象限?y隨x的增大如何變化?
(3)點B(1,﹣6),C(2,4)和D(2,﹣3)是否在這個函數(shù)的圖象上?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com