(1)計算:2-2+|-
1
4
|-(π-2014)0
(2)先化簡,再求值:(x-1)2-x(x-2y)+2x,其中x=-
1
2
,y=2.
考點:實數(shù)的運算,整式的混合運算—化簡求值,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪
專題:
分析:(1)分別根據(jù)負(fù)整數(shù)指數(shù)冪的運算法則、0指數(shù)冪的運算法則及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;
(2)先根據(jù)整式混合運算的法則把原式進行化簡,再把x、y的值代入進行計算即可.
解答:解:(1)原式=
1
4
+
1
4
-1
=-
1
2
;

(2)原式=x2-2x+1-x2+2xy
=2xy-2x 
當(dāng)x=-
1
2
,y=2時,原式=0.
點評:本題考查的是實數(shù)的運算,熟知負(fù)整數(shù)指數(shù)冪的運算法則、數(shù)的開方法則、特殊角的三角函數(shù)值及絕對值的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx-3,頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且OB=OC=3OA.過點B的直線y=-
1
3
x+1與y軸交于點D.
(1)a=
 
,b=
 
;
(2)求∠DBC-∠CBE的值;
(3)若點Q為該二次函數(shù)的圖象上的一點,且橫坐標(biāo)為-2,另有點P是x軸的正半軸上的任意一點,試判斷PQ-PC和BQ-BC值的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;
(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
1
x-1
-
3
x2-1
=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=mx與雙曲線y=
k
x
相交于A、B兩點,A點的坐標(biāo)為(1,2)
(1)求反比例函數(shù)的表達式;
(2)根據(jù)圖象直接寫出當(dāng)mx>
k
x
時,x的取值范圍;
(3)計算線段AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠ABC的角平分線交AC邊于點D.
(1)用尺規(guī)作∠ABC的角平分線BD(不寫作法,保留作圖痕跡)
(2)若BD=9,sin∠DBC=
1
3
,BC=7
2
,求tanC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是由圓心角為30°,半徑分別是1、3、5、7、…的扇形組成的圖形,陰影部分的面積依次記為S1、S2、S3、…,則S14=
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)7,3,5,x,9的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰梯形ABCD中,AD∥BC,AD=2,AB=3,BC=6,點E為邊AB中點,點F是邊BC上一動點,線段CE與線段DF交于點G,連接AG,若△ADG∽△DFC時,則線段CF的長為
 

查看答案和解析>>

同步練習(xí)冊答案