【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:

已知:直線l和l外一點P.(如圖1)

求作:直線l的垂線,使它經(jīng)過點P.

作法:如圖2

(1)在直線l上任取兩點A,B;

(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請回答:該作圖的依據(jù)是

【答案】到線段兩個端點的距離相等的點在線段的垂直平分線上(A、B都在線段PQ的垂直平分線上).

【解析】到線段兩個端點的距離相等的點在線段的垂直平分線上(A、B都在線段PQ的垂直平分線上),理由:如圖,PA=PQ,PB=PB,點A、點B在線段PQ的垂直平分線上,直線AB垂直平分線段PQ,PQAB.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.

(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=10,對角線AC=12.若過點A作AE⊥CD,垂足為E,則AE的長為(
A.9
B.
C.
D.9.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】α與β的兩邊分別平行,且α =(x+10)°,β =(2x-25)°,則α的度數(shù)為(

A.45° B.75° C.45°或75° D.45°或55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題提出】

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

【問題探究】

不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗、觀察、類比、最后歸納、猜測得出結(jié)論.

【探究一】

(1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

此時,顯然能搭成一種等腰三角形.

所以,當n=3時,m=1.

(2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

所以,當n=4時,m=0.

(3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

所以,當n=5時,m=1.

(4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

所以,當n=6時,m=1.

綜上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?

(仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)

(2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表②中)

表②

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,…

【問題解決】:

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

表③

【問題應用】:

用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:m6m3的結(jié)果(
A.m18
B.m9
C.m3
D.m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是(

A.cm2 B.cm2 C.cm2 D.cm2

查看答案和解析>>

同步練習冊答案