【題目】如圖,直線軸于點,過軸,雙曲線、兩點(點在已知直線上),若,則________

【答案】

【解析】

AEx軸于E點,先確定B點坐標為(4,0),D點坐標為(0,3),利用勾股定理計算出BD=5,設C點坐標可表示為AB=BC=,易證得BOD∽△BEA,則于是A點坐標為(然后把A點坐標代入反比例函數(shù)解析式中得到關于k的方程,再解方程即可.

如圖,AEx軸于E點,

對于y=34x+3,令x=0,y=3;y=0,x=4,

B點坐標為(4,0),D點坐標為(0,3),

CBx軸,

C點的橫坐標為4,

C點坐標可表示為,

AB=BC,

ODAE,

BODBEA

A點坐標為

A點在的圖象上,

解得

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于點D,則△ABD與△ADC的面積比為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知:把RtABC和RtDEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°AC = 8 cm,BC = 6 cm,EF = 9 cm

如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速,在DEF移的同時,點P從ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移.當DEF的頂點D移動到AC邊上時,DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設動時間為t(s)(0<t<4.5).

解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?

(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.

(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知線段BC=2,點B關于直線AC的對稱點是點D,點E為射線CA上一點,且ED=BD,連接DE,BE.

(1)依據(jù)題意補全圖1,并證明:△BDE為等邊三角形;

(2)若∠ACB=45°,點C關于直線BD的對稱點為點F,連接FD、FB,將△CDE繞點D順時針旋轉(zhuǎn)度(0°<<360°)得, 點E的對應點為E’,點C的對應點為點C’.

(i)如圖2,當時 ,連接BC’.證明:EF=BC’;

(ii)如圖3,點M為DC中點,點P為線段C’E’上任意一點,試探究:在此旋轉(zhuǎn)過程中,線段PM長度的取值范圍?(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一挖寶游戲,有一寶藏被隨意藏在下面圓形區(qū)域內(nèi),(圓形區(qū)域被分成八等份)如圖

(1)假如你去尋找寶藏,你會選擇哪個區(qū)域(區(qū)域;區(qū)域;區(qū)域)?為什么?在此區(qū)域一定能夠找到寶藏嗎?

(2)寶藏藏在哪兩個區(qū)域的可能性相同?

(3)如果埋寶藏的區(qū)域如圖(圖中每個方塊完全相同),(1)(2)的結(jié)果又會怎樣?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標系中的位置如圖所示,根據(jù)圖象回答下列問題:

(1)圖象的另一支在第________象限;在每個象限內(nèi),的增大而________;

(2)常數(shù)的取值范圍是________;

(3)若此反比例函數(shù)的圖象經(jīng)過點,求的值.點是否在這個函數(shù)圖象上?點呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是正方形ABCD的邊AD上的動點,F是邊BC延長線上的一點,且BF=EF,AB=12,設AE=x,BF=y

1)當BEF是等邊三角形時,求BF的長;

2)求yx的函數(shù)解析式,并寫出它的定義域;

3)把ABE沿著直線BE翻折,點A落在點A′處,試探索:A′BF能否為等腰三角形?如果能,請求出AE的長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的和諧分割線.如圖,線段CDABC和諧分割線”,ACD為等腰三角形,CBDABC相似,A=46°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,三角形ABC的三個頂點都在正方形方格的格點上

1)寫出A、BC三點的坐標;

2)若ABC各頂點的橫坐標不變,縱坐標都乘以-1,請你再坐標系中描出對應的點A′、B′、C′,并依次連接這三個點,則所得的A′B′C′與原ABC有怎樣的位置關系?

3)在(2)的基礎上,縱坐標都不變,橫坐標都乘以-1,在同一坐標系中描出對應的點A″、B″C″,并依次連接這三個點,所得的A″B″C″與原ABC有怎樣的位置關系?

查看答案和解析>>

同步練習冊答案